Submission #924602

# Submission time Handle Problem Language Result Execution time Memory
924602 2024-02-09T08:59:55 Z qwe1rt1yuiop1 Collecting Stamps 3 (JOI20_ho_t3) C++14
15 / 100
2000 ms 322900 KB
#include <bits/stdc++.h>
#define int long long
using namespace std;
using pii = pair<int, int>;

int n, l;

vector<int> x, t;

int dis(int a, int b)
{
    assert(0 <= a && 0 <= b && a <= n && b <= n);
    return min(min(abs(x[a] - x[b]), x[a] + l - x[b]), l - x[a] + x[b]);
}

void solve()
{
    cin >> n >> l;
    x.assign(n + 1, 0), t.assign(n + 1, -1);
    for (int i = 1; i <= n; ++i)
        cin >> x[i];
    for (int i = 1; i <= n; ++i)
        cin >> t[i];

    vector<vector<vector<vector<int>>>> dp(n + 1, vector<vector<vector<int>>>(n + 1, vector<vector<int>>(n + 1, vector<int>(2, LONG_LONG_MAX))));

    // priority_queue<array<int, 5>> pq;
    // array<int, 5> tmp;
    dp[0][0][0][0] = dp[0][0][0][1] = 0;
    for (int i = 0; i <= n; ++i)
        for (int j = 0; j <= n; ++j)
        {
            dp[0][i][j][0] = dis(0, j) + dis(j, i);
            dp[0][i][j][1] = dis(0, i) + dis(i, j);
        }
    // pq.emplace(tmp = {0, 0, 0, 0, 0});
    // pq.emplace(tmp = {0, 0, 0, 0, 1});
    /*
    while (!pq.empty())
    {
        tmp = pq.top();
        pq.pop();
        int i = tmp[1], j = tmp[2], k = tmp[3], ll = tmp[4], d = -tmp[0];
        if (d != dp[i][j][k][ll])
            continue;
        // cout << d << ' ';

        if (ll == 0)
        {
            if ((j + n) % (n + 1) != k)
            {
                if (dp[i][(j + n) % (n + 1)][k][0] > dp[i][j][k][0] + dis(j, (j + n) % (n + 1)))
                {
                    dp[i][(j + n) % (n + 1)][k][0] = dp[i][j][k][0] + dis(j, (j + n) % (n + 1));
                    pq.emplace(tmp = {-dp[i][(j + n) % (n + 1)][k][0], i, (j + n) % (n + 1), k, 0});
                }
                if (dp[i][j][k][0] + dis(j, (j + n) % (n + 1)) <= t[(j + n) % (n + 1)])
                {
                    if (dp[i + 1][(j + n) % (n + 1)][k][0] > dp[i][j][k][0] + dis(j, (j + n) % (n + 1)))
                    {
                        dp[i + 1][(j + n) % (n + 1)][k][0] = dp[i][j][k][0] + dis(j, (j + n) % (n + 1));
                        pq.emplace(tmp = {-dp[i + 1][(j + n) % (n + 1)][k][0], i + 1, (j + n) % (n + 1), k, 0});
                    }
                }
            }
            if (j != (k + 1) % (n + 1))
            {
                if (dp[i][j][(k + 1) % (n + 1)][1] > dp[i][j][k][0] + dis(j, (k + 1) % (n + 1)))
                {
                    dp[i][j][(k + 1) % (n + 1)][1] = dp[i][j][k][0] + dis(j, (k + 1) % (n + 1));
                    pq.emplace(tmp = {-dp[i][j][(k + 1) % (n + 1)][1], i, j, (k + 1) % (n + 1), 1});
                }
                if (dp[i][j][k][0] + dis(j, (k + 1) % (n + 1)) <= t[(k + 1) % (n + 1)])
                {
                    if (dp[i + 1][j][(k + 1) % (n + 1)][1] > dp[i][j][k][0] + dis(j, (k + 1) % (n + 1)))
                    {
                        dp[i + 1][j][(k + 1) % (n + 1)][1] = dp[i][j][k][0] + dis(j, (k + 1) % (n + 1));
                        pq.emplace(tmp = {-dp[i + 1][j][(k + 1) % (n + 1)][1], i + 1, j, (k + 1) % (n + 1), 1});
                    }
                }
            }
        }
        else
        {
            if ((j + n) % (n + 1) != k)
            {
                if (dp[i][(j + n) % (n + 1)][k][0] > dp[i][j][k][1] + dis(k, (j + n) % (n + 1)))
                {
                    dp[i][(j + n) % (n + 1)][k][0] = dp[i][j][k][1] + dis(k, (j + n) % (n + 1));
                    pq.emplace(tmp = {-dp[i][(j + n) % (n + 1)][k][0], i, (j + n) % (n + 1), k, 0});
                }
                if (dp[i][j][k][1] + dis(k, (j + n) % (n + 1)) <= t[(j + n) % (n + 1)])
                {
                    if (dp[i + 1][(j + n) % (n + 1)][k][0] > dp[i][j][k][1] + dis(k, (j + n) % (n + 1)))
                    {
                        dp[i + 1][(j + n) % (n + 1)][k][0] = dp[i][j][k][1] + dis(k, (j + n) % (n + 1));
                        pq.emplace(tmp = {-dp[i + 1][(j + n) % (n + 1)][k][0], i + 1, (j + n) % (n + 1), k, 0});
                    }
                }
            }
            if (j != (k + 1) % (n + 1))
            {
                if (dp[i][j][(k + 1) % (n + 1)][1] > dp[i][j][k][1] + dis(k, (k + 1) % (n + 1)))
                {
                    dp[i][j][(k + 1) % (n + 1)][1] = dp[i][j][k][1] + dis(k, (k + 1) % (n + 1));
                    pq.emplace(tmp = {-dp[i][j][(k + 1) % (n + 1)][1], i, j, (k + 1) % (n + 1), 1});
                }
                if (dp[i][j][k][1] + dis(k, (k + 1) % (n + 1)) <= t[(k + 1) % (n + 1)])
                {
                    if (dp[i + 1][j][(k + 1) % (n + 1)][1] > dp[i][j][k][1] + dis(k, (k + 1) % (n + 1)))
                    {
                        dp[i + 1][j][(k + 1) % (n + 1)][1] = dp[i][j][k][1] + dis(k, (k + 1) % (n + 1));
                        pq.emplace(tmp = {-dp[i + 1][j][(k + 1) % (n + 1)][1], i + 1, j, (k + 1) % (n + 1), 1});
                    }
                }
            }
        }
    }
    */
    
    for (int a = 0; a < 100; ++a)
    for (int i = 0; i < n; ++i)
        for (int j = 0; j <= n; ++j)
            for (int k = 0; k <= n; ++k)
            {
                if (dp[i][j][k][0] != LONG_LONG_MAX)
                {
                    if ((j + n) % (n + 1) != k)
                    {
                        dp[i][(j + n) % (n + 1)][k][0] = min(dp[i][(j + n) % (n + 1)][k][0], dp[i][j][k][0] + dis(j, (j + n) % (n + 1)));
                        if (dp[i][j][k][0] + dis(j, (j + n) % (n + 1)) <= t[(j + n) % (n + 1)])
                            dp[i + 1][(j + n) % (n + 1)][k][0] = min(dp[i + 1][(j + n) % (n + 1)][k][0], dp[i][j][k][0] + dis(j, (j + n) % (n + 1)));
                    }
                    if (j != (k + 1) % (n + 1))
                    {
                        dp[i][j][(k + 1) % (n + 1)][1] = min(dp[i][j][(k + 1) % (n + 1)][1], dp[i][j][k][0] + dis(j, (k + 1) % (n + 1)));
                        if (dp[i][j][k][0] + dis(j, (k + 1) % (n + 1)) <= t[(k + 1) % (n + 1)])
                            dp[i + 1][j][(k + 1) % (n + 1)][1] = min(dp[i + 1][j][(k + 1) % (n + 1)][1], dp[i][j][k][0] + dis(j, (k + 1) % (n + 1)));
                    }
                }
                if (dp[i][j][k][1] != LONG_LONG_MAX)
                {
                    if ((j + n) % (n + 1) != k)
                    {
                        dp[i][(j + n) % (n + 1)][k][0] = min(dp[i][(j + n) % (n + 1)][k][0], dp[i][j][k][1] + dis(k, (j + n) % (n + 1)));
                        if (dp[i][j][k][1] + dis(k, (j + n) % (n + 1)) <= t[(j + n) % (n + 1)])
                            dp[i + 1][(j + n) % (n + 1)][k][0] = min(dp[i + 1][(j + n) % (n + 1)][k][0], dp[i][j][k][1] + dis(k, (j + n) % (n + 1)));
                    }
                    if (j != (k + 1) % (n + 1))
                    {
                        dp[i][j][(k + 1) % (n + 1)][1] = min(dp[i][j][(k + 1) % (n + 1)][1], dp[i][j][k][1] + dis(k, (k + 1) % (n + 1)));
                        if (dp[i][j][k][1] + dis(k, (k + 1) % (n + 1)) <= t[(k + 1) % (n + 1)])
                            dp[i + 1][j][(k + 1) % (n + 1)][1] = min(dp[i + 1][j][(k + 1) % (n + 1)][1], dp[i][j][k][1] + dis(k, (k + 1) % (n + 1)));
                    }
                }
            }

    int ans = 0;
    for (int i = 0; i <= n; ++i)
        for (int j = 0; j <= n; ++j)
            for (int k = 0; k <= n; ++k)
                for (int l = 0; l < 2; ++l)
                    if (dp[i][j][k][l] != LONG_LONG_MAX)
                        ans = max(ans, i);
    cout << ans << '\n';
}

/*
6 25
3 4 7 17 21 23
11 7 17 10 8 10

5 20
4 5 8 13 17
18 23 15 7 10

4 19
3 7 12 14
2 0 5 4

10 87
9 23 33 38 42 44 45 62 67 78
15 91 7 27 31 53 12 91 89 46

 */

signed main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);

    solve();

    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 508 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 3 ms 592 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 2 ms 540 KB Output is correct
9 Correct 3 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 4 ms 344 KB Output is correct
13 Correct 4 ms 348 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 1 ms 348 KB Output is correct
16 Correct 4 ms 348 KB Output is correct
17 Correct 4 ms 592 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 508 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 3 ms 592 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 2 ms 540 KB Output is correct
9 Correct 3 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 4 ms 344 KB Output is correct
13 Correct 4 ms 348 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 1 ms 348 KB Output is correct
16 Correct 4 ms 348 KB Output is correct
17 Correct 4 ms 592 KB Output is correct
18 Correct 5 ms 604 KB Output is correct
19 Correct 2 ms 348 KB Output is correct
20 Correct 3 ms 348 KB Output is correct
21 Correct 5 ms 604 KB Output is correct
22 Correct 2 ms 348 KB Output is correct
23 Correct 7 ms 604 KB Output is correct
24 Correct 3 ms 604 KB Output is correct
25 Correct 6 ms 604 KB Output is correct
26 Correct 4 ms 604 KB Output is correct
27 Correct 2 ms 604 KB Output is correct
28 Correct 1 ms 348 KB Output is correct
29 Correct 8 ms 604 KB Output is correct
30 Correct 7 ms 604 KB Output is correct
31 Correct 2 ms 604 KB Output is correct
32 Correct 1 ms 604 KB Output is correct
33 Correct 8 ms 604 KB Output is correct
34 Correct 8 ms 604 KB Output is correct
35 Correct 8 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 508 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 3 ms 592 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 2 ms 540 KB Output is correct
9 Correct 3 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 4 ms 344 KB Output is correct
13 Correct 4 ms 348 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 1 ms 348 KB Output is correct
16 Correct 4 ms 348 KB Output is correct
17 Correct 4 ms 592 KB Output is correct
18 Execution timed out 2091 ms 322900 KB Time limit exceeded
19 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 508 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 3 ms 592 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 2 ms 540 KB Output is correct
9 Correct 3 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 4 ms 344 KB Output is correct
13 Correct 4 ms 348 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 1 ms 348 KB Output is correct
16 Correct 4 ms 348 KB Output is correct
17 Correct 4 ms 592 KB Output is correct
18 Correct 5 ms 604 KB Output is correct
19 Correct 2 ms 348 KB Output is correct
20 Correct 3 ms 348 KB Output is correct
21 Correct 5 ms 604 KB Output is correct
22 Correct 2 ms 348 KB Output is correct
23 Correct 7 ms 604 KB Output is correct
24 Correct 3 ms 604 KB Output is correct
25 Correct 6 ms 604 KB Output is correct
26 Correct 4 ms 604 KB Output is correct
27 Correct 2 ms 604 KB Output is correct
28 Correct 1 ms 348 KB Output is correct
29 Correct 8 ms 604 KB Output is correct
30 Correct 7 ms 604 KB Output is correct
31 Correct 2 ms 604 KB Output is correct
32 Correct 1 ms 604 KB Output is correct
33 Correct 8 ms 604 KB Output is correct
34 Correct 8 ms 604 KB Output is correct
35 Correct 8 ms 604 KB Output is correct
36 Execution timed out 2091 ms 322900 KB Time limit exceeded
37 Halted 0 ms 0 KB -