답안 #921010

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
921010 2024-02-03T08:54:21 Z KiaRez Cats or Dogs (JOI18_catdog) C++17
100 / 100
732 ms 44404 KB
/*
    IN THE NAME OF GOD
*/
#include <bits/stdc++.h>

// #pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")

using namespace std;

typedef long long ll;
typedef pair<ll, ll> pll;
typedef pair<int, int> pii;
typedef long double ld;

#define F                                      first
#define S                                      second
#define Mp                                     make_pair
#define pb                                     push_back
#define pf                                     push_front
#define size(x)                                ((ll)x.size())
#define all(x)                                 (x).begin(),(x).end()
#define kill(x)		                           cout << x << '\n', exit(0);
#define fuck(x)                                cout << "(" << #x << " , " << x << ")" << endl
#define endl                                   '\n'

const int N = 3e5+23, lg = 17;
ll Mod = 998244353;

inline ll MOD(ll a, ll mod=Mod) {a%=mod; (a<0)&&(a+=mod); return a;}
inline ll poww(ll a, ll b, ll mod=Mod) {
    ll ans = 1;
    a=MOD(a, mod);
    while (b) {
        if (b & 1) ans = MOD(ans*a, mod);
        b >>= 1;
        a = MOD(a*a, mod);
    }
    return ans;
}

struct node {
	int dp[2][2];
	node() {dp[0][0]=dp[0][1]=dp[1][0]=dp[1][1]=0; dp[0][1]=dp[1][0]=N;}
} seg[N];

node merge(node x, node y) {
	node z;
	for(int i=0; i<2; i++) {
	for(int j=0; j<2; j++) { 
z.dp[i][j] = min({x.dp[i][1]+y.dp[1][j], x.dp[i][0]+y.dp[0][j], x.dp[i][0]+y.dp[1][j]+1, 1+x.dp[i][1]+y.dp[0][j]});
	}
	}
	return z;
}

int n, tim, dwn[N], tin[N], tout[N], par[N], head[N], h[N], subt[N], typ[N];
int ttmp[2][2][N];
vector<int> adj[N];

void init(int v, int p=0) {
	par[v]=p, h[v]=h[p]+1, subt[v]=1;
	for(int u : adj[v]) {
		if(u == p) continue;
		init(u, v); subt[v] += subt[u];
	}
}

void dfs(int v, int p) {
	int mx = 0;
	tin[v] = ++tim, head[v] = p, dwn[p] = v;
	for(int u : adj[v]) if(u!=par[v]) mx = (subt[mx] > subt[u] ? mx : u);
	if(mx > 0) dfs(mx, p);
	for(int u : adj[v]) if(u!=par[v] && u!=mx) dfs(u, u);
	tout[v] = tim+1;
}

void update(int ind, node val) {
	if(ind == 0) return;
	if(ind >= (1<<lg)) {
		seg[ind] = val;
	} else {
		seg[ind] = merge(seg[2*ind], seg[2*ind+1]);
	}
	update(ind/2, val);
}

node query(int l, int r, int ind=1, int lc=1, int rc=(1<<lg)+1) {
	if(lc>=l && rc<=r) return seg[ind];
	int mid = (lc+rc)/2;
	if(r<=mid) return query(l, r, 2*ind, lc, mid);
	if(l>=mid) return query(l, r, 2*ind+1, mid, rc);
	return merge(query(l, r, 2*ind, lc, mid), query(l, r, 2*ind+1, mid, rc));
}

void initialize(int _n, vector<int> A, vector<int> B) {
	n=_n;
	for(int i=0; i<n-1; i++) adj[A[i]].pb(B[i]), adj[B[i]].pb(A[i]);
	init(1);
	dfs(1, 1);
}

int ftmp[2][2][N];
void reinit(int v) {
	int u = v;
	node ct;
	while(head[v] != 1) {
		ct = query(tin[head[v]], tin[dwn[head[v]]]+1);
		node tmp = query(tin[par[head[v]]], tin[par[head[v]]]+1);
		v=par[head[v]];
		ftmp[0][0][tin[v]] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
		ftmp[1][0][tin[v]] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
		ftmp[0][1][tin[v]] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
		ftmp[1][1][tin[v]] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
		update(tin[v]+(1<<lg)-1, tmp);
	}

	v = u;
	while(head[v] != 1) {
		ct = query(tin[head[v]], tin[dwn[head[v]]]+1);
		node tmp = query(tin[par[head[v]]], tin[par[head[v]]]+1);
		v=par[head[v]];
		tmp.dp[0][0] -= ftmp[0][0][tin[v]];
		tmp.dp[1][0] -= ftmp[1][0][tin[v]];
		tmp.dp[0][1] -= ftmp[0][1][tin[v]];
		tmp.dp[1][1] -= ftmp[1][1][tin[v]];
		ttmp[0][0][tin[v]] -= ftmp[0][0][tin[v]];
		ttmp[1][0][tin[v]] -= ftmp[1][0][tin[v]];
		ttmp[0][1][tin[v]] -= ftmp[0][1][tin[v]];
		ttmp[1][1][tin[v]] -= ftmp[1][1][tin[v]];
		update(tin[v]+(1<<lg)-1, tmp);
		for(int i=0; i<2; i++) for(int j=0; j<2; j++) ftmp[i][j][tin[v]] = 0;
	}
}

int cat(int v) {
	reinit(v);
	typ[v] = 1;
	
	node ct;
	ct.dp[1][0]=ct.dp[1][1]=ct.dp[0][1]=n;
	if(v==1) ct.dp[1][0] = 0;
	for(int i=0; i<2; i++) for(int j=0; j<2; j++) ct.dp[i][j] += ttmp[i][j][tin[v]];
	update(tin[v]+(1<<lg)-1, ct);
	while(head[v] != 1) {
		ct = query(tin[head[v]], tin[dwn[head[v]]]+1);
		node tmp = query(tin[par[head[v]]], tin[par[head[v]]]+1);
		tmp.dp[0][0] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
		tmp.dp[1][0] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
		tmp.dp[0][1] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
		tmp.dp[1][1] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
		v=par[head[v]];
		ttmp[0][0][tin[v]] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
		ttmp[1][0][tin[v]] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
		ttmp[0][1][tin[v]] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
		ttmp[1][1][tin[v]] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
		update(tin[v]+(1<<lg)-1, tmp);
	}

	ct = query(tin[1], tin[dwn[1]]+1);
	return min({ct.dp[0][0], ct.dp[0][1], ct.dp[1][1], ct.dp[1][0]});
}

int dog(int v) {
	reinit(v);
	typ[v] = 2;

	node ct;
	ct.dp[1][0]=ct.dp[0][0]=ct.dp[0][1]=n;
	if(v==1) ct.dp[0][1] = 0;
	for(int i=0; i<2; i++) for(int j=0; j<2; j++) ct.dp[i][j] += ttmp[i][j][tin[v]];
	update(tin[v]+(1<<lg)-1, ct);
	while(head[v] != 1) {
		ct = query(tin[head[v]], tin[dwn[head[v]]]+1);
		node tmp = query(tin[par[head[v]]], tin[par[head[v]]]+1);
		tmp.dp[0][0] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
		tmp.dp[1][0] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
		tmp.dp[0][1] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
		tmp.dp[1][1] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
		v=par[head[v]];
		ttmp[0][0][tin[v]] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
		ttmp[1][0][tin[v]] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
		ttmp[0][1][tin[v]] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
		ttmp[1][1][tin[v]] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
		update(tin[v]+(1<<lg)-1, tmp);
	}

	ct = query(tin[1], tin[dwn[1]]+1);
	return min({ct.dp[0][0], ct.dp[0][1], ct.dp[1][1], ct.dp[1][0]});
}

int neighbor(int v) {
	reinit(v);
	typ[v] = 0;

	node ct;
	for(int i=0; i<2; i++) for(int j=0; j<2; j++) ct.dp[i][j] += ttmp[i][j][tin[v]];
	update(tin[v]+(1<<lg)-1, ct);
	while(head[v] != 1) {
		ct = query(tin[head[v]], tin[dwn[head[v]]]+1);
		node tmp = query(tin[par[head[v]]], tin[par[head[v]]]+1);
		tmp.dp[0][0] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
		tmp.dp[1][0] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
		tmp.dp[0][1] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
		tmp.dp[1][1] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
		v=par[head[v]];
		ttmp[0][0][tin[v]] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
		ttmp[1][0][tin[v]] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
		ttmp[0][1][tin[v]] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
		ttmp[1][1][tin[v]] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
		update(tin[v]+(1<<lg)-1, tmp);
	}

	ct = query(tin[1], tin[dwn[1]]+1);
	return min({ct.dp[0][0], ct.dp[0][1], ct.dp[1][1], ct.dp[1][0]});
}

/*
int main () {

	initialize(7, {1, 2, 3, 1, 5, 1}, {2, 3, 4, 5, 6, 7});
	
	cout<< cat(1)<<endl;
	cout<< dog(5)<<endl;
	cout<< dog(4)<<endl;
	cout<< dog(2)<<endl;
	cout<< dog(7)<<endl;
	cout<< dog(3)<<endl;
	cout<< dog(6)<<endl;
	cout<< neighbor(1)<<endl;
	
	// tmp2 = merge(tmp2, tmp1);
	// fuck(tmp2.dp[0][0]);
	// fuck(tmp2.dp[1][0]);
	// fuck(tmp2.dp[0][1]);
	// fuck(tmp2.dp[1][1]);

	return 0;
}
*/
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 22364 KB Output is correct
2 Correct 6 ms 28508 KB Output is correct
3 Correct 6 ms 28752 KB Output is correct
4 Correct 6 ms 26716 KB Output is correct
5 Correct 6 ms 28508 KB Output is correct
6 Correct 6 ms 26548 KB Output is correct
7 Correct 6 ms 28724 KB Output is correct
8 Correct 6 ms 28592 KB Output is correct
9 Correct 6 ms 26716 KB Output is correct
10 Correct 6 ms 28508 KB Output is correct
11 Correct 6 ms 26604 KB Output is correct
12 Correct 5 ms 22364 KB Output is correct
13 Correct 5 ms 22360 KB Output is correct
14 Correct 5 ms 22360 KB Output is correct
15 Correct 7 ms 28508 KB Output is correct
16 Correct 6 ms 28508 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 22364 KB Output is correct
2 Correct 6 ms 28508 KB Output is correct
3 Correct 6 ms 28752 KB Output is correct
4 Correct 6 ms 26716 KB Output is correct
5 Correct 6 ms 28508 KB Output is correct
6 Correct 6 ms 26548 KB Output is correct
7 Correct 6 ms 28724 KB Output is correct
8 Correct 6 ms 28592 KB Output is correct
9 Correct 6 ms 26716 KB Output is correct
10 Correct 6 ms 28508 KB Output is correct
11 Correct 6 ms 26604 KB Output is correct
12 Correct 5 ms 22364 KB Output is correct
13 Correct 5 ms 22360 KB Output is correct
14 Correct 5 ms 22360 KB Output is correct
15 Correct 7 ms 28508 KB Output is correct
16 Correct 6 ms 28508 KB Output is correct
17 Correct 8 ms 26712 KB Output is correct
18 Correct 9 ms 28764 KB Output is correct
19 Correct 7 ms 28764 KB Output is correct
20 Correct 7 ms 26712 KB Output is correct
21 Correct 8 ms 28764 KB Output is correct
22 Correct 7 ms 28764 KB Output is correct
23 Correct 8 ms 26784 KB Output is correct
24 Correct 8 ms 28764 KB Output is correct
25 Correct 9 ms 28764 KB Output is correct
26 Correct 7 ms 28724 KB Output is correct
27 Correct 6 ms 26716 KB Output is correct
28 Correct 6 ms 28760 KB Output is correct
29 Correct 7 ms 26712 KB Output is correct
30 Correct 7 ms 28764 KB Output is correct
31 Correct 6 ms 28764 KB Output is correct
32 Correct 8 ms 28748 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 22364 KB Output is correct
2 Correct 6 ms 28508 KB Output is correct
3 Correct 6 ms 28752 KB Output is correct
4 Correct 6 ms 26716 KB Output is correct
5 Correct 6 ms 28508 KB Output is correct
6 Correct 6 ms 26548 KB Output is correct
7 Correct 6 ms 28724 KB Output is correct
8 Correct 6 ms 28592 KB Output is correct
9 Correct 6 ms 26716 KB Output is correct
10 Correct 6 ms 28508 KB Output is correct
11 Correct 6 ms 26604 KB Output is correct
12 Correct 5 ms 22364 KB Output is correct
13 Correct 5 ms 22360 KB Output is correct
14 Correct 5 ms 22360 KB Output is correct
15 Correct 7 ms 28508 KB Output is correct
16 Correct 6 ms 28508 KB Output is correct
17 Correct 8 ms 26712 KB Output is correct
18 Correct 9 ms 28764 KB Output is correct
19 Correct 7 ms 28764 KB Output is correct
20 Correct 7 ms 26712 KB Output is correct
21 Correct 8 ms 28764 KB Output is correct
22 Correct 7 ms 28764 KB Output is correct
23 Correct 8 ms 26784 KB Output is correct
24 Correct 8 ms 28764 KB Output is correct
25 Correct 9 ms 28764 KB Output is correct
26 Correct 7 ms 28724 KB Output is correct
27 Correct 6 ms 26716 KB Output is correct
28 Correct 6 ms 28760 KB Output is correct
29 Correct 7 ms 26712 KB Output is correct
30 Correct 7 ms 28764 KB Output is correct
31 Correct 6 ms 28764 KB Output is correct
32 Correct 8 ms 28748 KB Output is correct
33 Correct 435 ms 33536 KB Output is correct
34 Correct 122 ms 33108 KB Output is correct
35 Correct 403 ms 32672 KB Output is correct
36 Correct 687 ms 36576 KB Output is correct
37 Correct 17 ms 30740 KB Output is correct
38 Correct 730 ms 37272 KB Output is correct
39 Correct 681 ms 37288 KB Output is correct
40 Correct 728 ms 37280 KB Output is correct
41 Correct 732 ms 37184 KB Output is correct
42 Correct 688 ms 37296 KB Output is correct
43 Correct 705 ms 37424 KB Output is correct
44 Correct 684 ms 37300 KB Output is correct
45 Correct 682 ms 37300 KB Output is correct
46 Correct 672 ms 37304 KB Output is correct
47 Correct 668 ms 37280 KB Output is correct
48 Correct 146 ms 34760 KB Output is correct
49 Correct 156 ms 36140 KB Output is correct
50 Correct 70 ms 30512 KB Output is correct
51 Correct 72 ms 31560 KB Output is correct
52 Correct 32 ms 30040 KB Output is correct
53 Correct 266 ms 35460 KB Output is correct
54 Correct 237 ms 32324 KB Output is correct
55 Correct 587 ms 35220 KB Output is correct
56 Correct 381 ms 33020 KB Output is correct
57 Correct 477 ms 35728 KB Output is correct
58 Correct 27 ms 31376 KB Output is correct
59 Correct 59 ms 31568 KB Output is correct
60 Correct 120 ms 35300 KB Output is correct
61 Correct 130 ms 35640 KB Output is correct
62 Correct 79 ms 33964 KB Output is correct
63 Correct 47 ms 30684 KB Output is correct
64 Correct 37 ms 28496 KB Output is correct
65 Correct 50 ms 32592 KB Output is correct
66 Correct 70 ms 32336 KB Output is correct
67 Correct 56 ms 33088 KB Output is correct
68 Correct 124 ms 38952 KB Output is correct
69 Correct 28 ms 24016 KB Output is correct
70 Correct 10 ms 22616 KB Output is correct
71 Correct 43 ms 28696 KB Output is correct
72 Correct 58 ms 31568 KB Output is correct
73 Correct 243 ms 44404 KB Output is correct
74 Correct 270 ms 40732 KB Output is correct
75 Correct 109 ms 36180 KB Output is correct
76 Correct 107 ms 35012 KB Output is correct
77 Correct 274 ms 41116 KB Output is correct