Submission #918743

# Submission time Handle Problem Language Result Execution time Memory
918743 2024-01-30T10:44:59 Z dsyz Osumnjičeni (COCI21_osumnjiceni) C++17
110 / 110
369 ms 53328 KB
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
#define MAXN (200005)
ll N,Q, sum = 1;
ll parent[20][MAXN];
int main() {
	ios_base::sync_with_stdio(false);cin.tie(0);
	cin>>N;
	pair<ll,ll> arr[N];
	for(ll i = 0;i < N;i++){
		cin>>arr[i].first>>arr[i].second;
	}
	set<pair<ll,ll> > s; //all ranges in the set do not intersect at any point in time so do not need to use multiset
	ll Rptr = 0;
	for(ll L = 0;L < N;L++){ //for each element L, the range where L can jump to with no extra cost (Rptr) is increasing monotonically
		while(Rptr < N){
			bool ok = 1;
			auto it = s.lower_bound({arr[Rptr].first,-1e18});
			if(!s.empty() && it != s.end()){
				if(it->first <= arr[Rptr].second) ok = 0;
			}
			if(!s.empty() && it != s.begin()){ //remember that all ranges in the set do not intersect so (it--) [element with greatest L value] would have the greatest R value
				it--;
				if(it->second >= arr[Rptr].first) ok = 0;
			}
			if(ok){
				s.insert(arr[Rptr]);
				Rptr++;
			}else{
				break;
			}
		}
		parent[0][L] = Rptr; //I can jump from L to Rptr with no cost ([L,Rptr - 1] can be in same lineup)
		s.erase(s.find(arr[L]));
	}
	for(ll k = 0;k < 20;k++){ //since I set out-of-range as N, then i must make sure that my imaginary N pos is a stopper (self loop because there is no more position to jump towards on the right anymore)
		parent[k][N] = N;
	}
	for(ll k = 1;k < 20;k++){
		for(ll i = 0;i < N;i++){
			parent[k][i] = parent[k-1][parent[k - 1][i]];
		}
	}
	cin>>Q;
	for(ll q = 0;q < Q;q++){
		ll a,b;
		cin>>a>>b;
		a--, b--;
		ll sum = 1; //number of lineups needed to jump from a to b
		//note that this 2k-decomp is different from "ancestor" (instead of the usual way of jumping d distance, we need to jump to pos b (or less if its lineup start before pos b) which is unknown distance away
		//we set parent[0][x] to be the nearest pos that cannot be in the same lineup as x (so the distance is all messed up already)
		//then because we do not know the exact distance to jump but we can rely on the index to know if we will overjump or not (since we are jumping on an array)
		for(ll k = 19;k >= 0;k--){
			if(parent[k][a] <= b){
				a = parent[k][a];
				sum += (1ll<<k);
			}
		}
		cout<<sum<<'\n';
	}
}
# Verdict Execution time Memory Grader output
1 Correct 50 ms 38352 KB Output is correct
2 Correct 49 ms 38108 KB Output is correct
3 Correct 47 ms 38224 KB Output is correct
4 Correct 51 ms 38744 KB Output is correct
5 Correct 50 ms 38636 KB Output is correct
6 Correct 43 ms 37968 KB Output is correct
7 Correct 57 ms 38480 KB Output is correct
8 Correct 47 ms 37880 KB Output is correct
9 Correct 51 ms 38224 KB Output is correct
10 Correct 54 ms 37760 KB Output is correct
11 Correct 162 ms 50120 KB Output is correct
12 Correct 146 ms 48980 KB Output is correct
13 Correct 150 ms 48932 KB Output is correct
14 Correct 138 ms 44848 KB Output is correct
15 Correct 132 ms 42996 KB Output is correct
16 Correct 6 ms 31180 KB Output is correct
17 Correct 47 ms 38484 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 31320 KB Output is correct
2 Correct 7 ms 31320 KB Output is correct
3 Correct 7 ms 31320 KB Output is correct
4 Correct 7 ms 31320 KB Output is correct
5 Correct 7 ms 31320 KB Output is correct
6 Correct 7 ms 31320 KB Output is correct
7 Correct 7 ms 31320 KB Output is correct
8 Correct 7 ms 31320 KB Output is correct
9 Correct 7 ms 31424 KB Output is correct
10 Correct 7 ms 31320 KB Output is correct
11 Correct 8 ms 31576 KB Output is correct
12 Correct 8 ms 31576 KB Output is correct
13 Correct 9 ms 31760 KB Output is correct
14 Correct 8 ms 31576 KB Output is correct
15 Correct 8 ms 31576 KB Output is correct
16 Correct 6 ms 31068 KB Output is correct
17 Correct 8 ms 31320 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 31320 KB Output is correct
2 Correct 7 ms 31320 KB Output is correct
3 Correct 7 ms 31320 KB Output is correct
4 Correct 7 ms 31320 KB Output is correct
5 Correct 7 ms 31320 KB Output is correct
6 Correct 7 ms 31320 KB Output is correct
7 Correct 7 ms 31320 KB Output is correct
8 Correct 7 ms 31320 KB Output is correct
9 Correct 7 ms 31424 KB Output is correct
10 Correct 7 ms 31320 KB Output is correct
11 Correct 8 ms 31576 KB Output is correct
12 Correct 8 ms 31576 KB Output is correct
13 Correct 9 ms 31760 KB Output is correct
14 Correct 8 ms 31576 KB Output is correct
15 Correct 8 ms 31576 KB Output is correct
16 Correct 6 ms 31068 KB Output is correct
17 Correct 8 ms 31320 KB Output is correct
18 Correct 62 ms 34128 KB Output is correct
19 Correct 54 ms 33884 KB Output is correct
20 Correct 60 ms 34132 KB Output is correct
21 Correct 55 ms 33872 KB Output is correct
22 Correct 60 ms 33872 KB Output is correct
23 Correct 56 ms 33864 KB Output is correct
24 Correct 64 ms 33852 KB Output is correct
25 Correct 58 ms 34032 KB Output is correct
26 Correct 58 ms 33872 KB Output is correct
27 Correct 53 ms 33684 KB Output is correct
28 Correct 42 ms 33616 KB Output is correct
29 Correct 43 ms 33872 KB Output is correct
30 Correct 45 ms 33872 KB Output is correct
31 Correct 46 ms 33616 KB Output is correct
32 Correct 43 ms 33904 KB Output is correct
33 Correct 5 ms 31064 KB Output is correct
34 Correct 47 ms 33852 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 55 ms 38480 KB Output is correct
2 Correct 50 ms 38336 KB Output is correct
3 Correct 45 ms 37968 KB Output is correct
4 Correct 46 ms 37712 KB Output is correct
5 Correct 47 ms 37968 KB Output is correct
6 Correct 45 ms 37968 KB Output is correct
7 Correct 46 ms 37968 KB Output is correct
8 Correct 48 ms 37740 KB Output is correct
9 Correct 49 ms 37972 KB Output is correct
10 Correct 55 ms 38480 KB Output is correct
11 Correct 141 ms 48808 KB Output is correct
12 Correct 178 ms 50640 KB Output is correct
13 Correct 146 ms 48804 KB Output is correct
14 Correct 132 ms 43344 KB Output is correct
15 Correct 143 ms 44880 KB Output is correct
16 Correct 5 ms 31064 KB Output is correct
17 Correct 44 ms 37968 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 50 ms 38352 KB Output is correct
2 Correct 49 ms 38108 KB Output is correct
3 Correct 47 ms 38224 KB Output is correct
4 Correct 51 ms 38744 KB Output is correct
5 Correct 50 ms 38636 KB Output is correct
6 Correct 43 ms 37968 KB Output is correct
7 Correct 57 ms 38480 KB Output is correct
8 Correct 47 ms 37880 KB Output is correct
9 Correct 51 ms 38224 KB Output is correct
10 Correct 54 ms 37760 KB Output is correct
11 Correct 162 ms 50120 KB Output is correct
12 Correct 146 ms 48980 KB Output is correct
13 Correct 150 ms 48932 KB Output is correct
14 Correct 138 ms 44848 KB Output is correct
15 Correct 132 ms 42996 KB Output is correct
16 Correct 6 ms 31180 KB Output is correct
17 Correct 47 ms 38484 KB Output is correct
18 Correct 7 ms 31320 KB Output is correct
19 Correct 7 ms 31320 KB Output is correct
20 Correct 7 ms 31320 KB Output is correct
21 Correct 7 ms 31320 KB Output is correct
22 Correct 7 ms 31320 KB Output is correct
23 Correct 7 ms 31320 KB Output is correct
24 Correct 7 ms 31320 KB Output is correct
25 Correct 7 ms 31320 KB Output is correct
26 Correct 7 ms 31424 KB Output is correct
27 Correct 7 ms 31320 KB Output is correct
28 Correct 8 ms 31576 KB Output is correct
29 Correct 8 ms 31576 KB Output is correct
30 Correct 9 ms 31760 KB Output is correct
31 Correct 8 ms 31576 KB Output is correct
32 Correct 8 ms 31576 KB Output is correct
33 Correct 6 ms 31068 KB Output is correct
34 Correct 8 ms 31320 KB Output is correct
35 Correct 62 ms 34128 KB Output is correct
36 Correct 54 ms 33884 KB Output is correct
37 Correct 60 ms 34132 KB Output is correct
38 Correct 55 ms 33872 KB Output is correct
39 Correct 60 ms 33872 KB Output is correct
40 Correct 56 ms 33864 KB Output is correct
41 Correct 64 ms 33852 KB Output is correct
42 Correct 58 ms 34032 KB Output is correct
43 Correct 58 ms 33872 KB Output is correct
44 Correct 53 ms 33684 KB Output is correct
45 Correct 42 ms 33616 KB Output is correct
46 Correct 43 ms 33872 KB Output is correct
47 Correct 45 ms 33872 KB Output is correct
48 Correct 46 ms 33616 KB Output is correct
49 Correct 43 ms 33904 KB Output is correct
50 Correct 5 ms 31064 KB Output is correct
51 Correct 47 ms 33852 KB Output is correct
52 Correct 55 ms 38480 KB Output is correct
53 Correct 50 ms 38336 KB Output is correct
54 Correct 45 ms 37968 KB Output is correct
55 Correct 46 ms 37712 KB Output is correct
56 Correct 47 ms 37968 KB Output is correct
57 Correct 45 ms 37968 KB Output is correct
58 Correct 46 ms 37968 KB Output is correct
59 Correct 48 ms 37740 KB Output is correct
60 Correct 49 ms 37972 KB Output is correct
61 Correct 55 ms 38480 KB Output is correct
62 Correct 141 ms 48808 KB Output is correct
63 Correct 178 ms 50640 KB Output is correct
64 Correct 146 ms 48804 KB Output is correct
65 Correct 132 ms 43344 KB Output is correct
66 Correct 143 ms 44880 KB Output is correct
67 Correct 5 ms 31064 KB Output is correct
68 Correct 44 ms 37968 KB Output is correct
69 Correct 316 ms 41608 KB Output is correct
70 Correct 323 ms 42064 KB Output is correct
71 Correct 326 ms 41292 KB Output is correct
72 Correct 310 ms 41692 KB Output is correct
73 Correct 344 ms 41808 KB Output is correct
74 Correct 369 ms 42156 KB Output is correct
75 Correct 338 ms 41596 KB Output is correct
76 Correct 327 ms 42208 KB Output is correct
77 Correct 300 ms 41208 KB Output is correct
78 Correct 324 ms 41516 KB Output is correct
79 Correct 264 ms 53328 KB Output is correct
80 Correct 233 ms 51636 KB Output is correct
81 Correct 237 ms 51536 KB Output is correct
82 Correct 226 ms 46160 KB Output is correct
83 Correct 224 ms 45484 KB Output is correct
84 Correct 5 ms 31068 KB Output is correct
85 Correct 95 ms 41328 KB Output is correct