Submission #917759

# Submission time Handle Problem Language Result Execution time Memory
917759 2024-01-28T17:48:30 Z makrav Passport (JOI23_passport) C++14
6 / 100
183 ms 48932 KB
#define _USE_MATH_DEFINES
#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
typedef long double ld;
typedef vector<int> vei;
typedef vector<vei> vevei;

#define all(a) (a).begin(), (a).end()
#define sz(a) (int) a.size()
#define con cout << "NO\n"
#define coe cout << "YES\n";
#define str string
#define pb push_back
#define ff first
#define sc second
#define ss second
#define pii pair<int, int>
#define mxe max_element
#define mne min_element
#define stf shrink_to_fit
#define f(i, l, r) for (int i = (l); i < (r); i++)
#define double ld

vector<int> Log2;

struct sparsemax {
    int n;
    vector<pii> a;
    vector<vector<int>> sp;
    sparsemax() = default;
    sparsemax(int n_, vector<pii> a_) {
        n = n_;
        a = a_;
        sp.assign(Log2[n] + 1, vector<int>(n, 0));
        build();
    }

    void build() {
        f (i, 0, n) sp[0][i] = i;
        f (i, 1, Log2[n] + 1) {
            for (int j = 0; j + (1 << i) - 1 < n; j++) {
                int li = sp[i - 1][j], ri = sp[i - 1][j + (1 << (i - 1))];
                if (a[li].sc > a[ri].sc) sp[i][j] = li;
                else if (a[li].sc < a[ri].sc) sp[i][j] = ri;
                else sp[i][j] = (a[li].ff < a[ri].ff ? li : ri);
            }
        }
    }

    int get(int l, int r) {
        int lg = Log2[r - l + 1];
        int li = sp[lg][l], ri = sp[lg][r - (1 << lg) + 1];
        if (a[li].sc > a[ri].sc) return li;
        else if (a[li].sc < a[ri].sc) return ri;
        else return (a[li].ff < a[ri].ff ? li : ri);
    }
};

struct sparsemin {
    int n;
    vector<pii> a;
    vector<vector<int>> sp;
    sparsemin() = default;
    sparsemin(int n_, vector<pii> a_) {
        n = n_;
        a = a_;
        sp.assign(Log2[n] + 1, vector<int>(n, 0));
        build();
    }

    void build() {
        f(i, 0, n) sp[0][i] = i;
        f(i, 1, Log2[n] + 1) {
            for (int j = 0; j + (1 << i) - 1 < n; j++) {
                int li = sp[i - 1][j], ri = sp[i - 1][j + (1 << (i - 1))];
                if (a[li].ff > a[ri].ff) sp[i][j] = ri;
                else if (a[li].ff < a[ri].ff) sp[i][j] = li;
                else sp[i][j] = (a[li].sc < a[ri].sc ? ri : li);
            }
        }
    }

    int get(int l, int r) {
        int lg = Log2[r - l + 1];
        int li = sp[lg][l], ri = sp[lg][r - (1 << lg) + 1];
        if (a[li].ff > a[ri].ff) return ri;
        else if (a[li].ff < a[ri].ff) return li;
        else return (a[li].sc < a[ri].sc ? ri : li);
    }
};

struct node {
    int mx;
    node() = default;
    node(int a) {
        mx = a;
    }
};

struct segtree {
    int n;
    vector<int> a;
    vector<node> t;

    segtree() = default;
    segtree(int n_, vector<int> a_) {
        n = n_;
        a = a_;
        t.resize(4 * n);
        build(1, 0, n);
    }

    void build(int v, int tl, int tr) {
        if (tl + 1 == tr) {
            t[v] = node(a[tl]);
            return;
        }
        int tm = (tl + tr) / 2;
        build(v * 2, tl, tm);
        build(v * 2 + 1, tm, tr);
        t[v].mx = min(t[v * 2].mx, t[v * 2 + 1].mx);
    }

    int req(int v, int tl, int tr, int l, int r) {
        if (l <= tl && tr <= r) return t[v].mx;
        if (tr <= l || tl >= r) return 1e9;
        int tm = (tl + tr) / 2;
        return min(req(v * 2, tl, tm, l, r), req(v * 2 + 1, tm, tr, l, r));
    }

    void upd(int v, int tl, int tr, int pos, int val) {
        if (tl + 1 == tr) {
            t[v] = node(val);return;
        }
        int tm = (tl + tr) / 2;
        if (pos < tm) {
            upd(v * 2, tl, tm, pos, val);
        }
        else {
            upd(v * 2 + 1, tm, tr, pos, val);
        }
        t[v].mx = min(t[v * 2].mx, t[v * 2 + 1].mx);
    }
};

signed main() {
    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(nullptr);

    Log2.assign(200010, 0);
    for (int i = 2; i < 200010; i++) {
        Log2[i] = Log2[i / 2] + 1;
    }

    int n; cin >> n;
    vector<pair<int, int>> a(n), ls(n), rs(n);
    vector<int> R(n), L(n), tor(n, 1e9), tol(n, 1e9);
    f (i, 0, n) {
        cin >> a[i].ff >> a[i].sc;
        a[i].ff--; a[i].sc--;
        R[i] = a[i].sc;
        L[i] = a[i].ff;
        ls[i] = {L[i], i};
        rs[i] = {R[i], i};
    }       
    sparsemax sp(n, a);
    sparsemin sp2(n, a);
    sort(all(rs));
    for (int i = n - 1; i >= 0; i--) {
        if (a[rs[i].sc].sc == n - 1) {
            tor[rs[i].sc] = 0;
            continue;
        }
        int maxr = sp.get(a[rs[i].sc].ff, a[rs[i].sc].sc);
        //cout << rs[i].sc << ' ';
        //cout << maxr << '\n';
        tor[rs[i].sc] = tor[maxr] + 1;
    }

    sort(all(ls));
    for (int i = 0; i < n; i++) {
        if (a[ls[i].sc].ff == 0) {
            tol[ls[i].sc] = 0;
            continue;
        }
        int minl = sp2.get(a[ls[i].sc].ff, a[ls[i].sc].sc);
        tol[ls[i].sc] = tol[minl] + 1;
    }

    vector<int> totans(n, 0), ANS(n);
    vector<pair<int, int>> fa;
    f (i, 0, n) {
        totans[i] = tol[i] + tor[i];
        fa.pb({totans[i], i});
    }
    sort(all(fa));
    segtree sg(n, vector<int>(n, 1e9));
    f (i, 0, n) {
        //cout << fa[i].ff << ' ' << fa[i].sc << ' ';
        ANS[fa[i].sc] = min(fa[i].ff, sg.req(1, 0, n, a[fa[i].sc].ff, a[fa[i].sc].sc + 1) + 1);
        //cout << ANS[fa[i].sc] << '\n';
        sg.upd(1, 0, n, fa[i].sc, ANS[fa[i].sc]);
    }

    int q; cin >> q;
    while (q--) {
        int x; cin >> x;
        x--;
        cout << (ANS[x] >= 1e9 ? -1 : ANS[x] + 1) << '\n';
    }

    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1116 KB Output is correct
2 Correct 1 ms 1116 KB Output is correct
3 Correct 1 ms 1116 KB Output is correct
4 Correct 183 ms 47960 KB Output is correct
5 Correct 128 ms 48448 KB Output is correct
6 Correct 101 ms 48932 KB Output is correct
7 Correct 82 ms 47624 KB Output is correct
8 Correct 69 ms 38940 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1116 KB Output is correct
2 Correct 1 ms 1368 KB Output is correct
3 Correct 1 ms 1116 KB Output is correct
4 Correct 1 ms 1116 KB Output is correct
5 Correct 1 ms 1112 KB Output is correct
6 Correct 1 ms 1116 KB Output is correct
7 Correct 1 ms 1116 KB Output is correct
8 Correct 1 ms 1176 KB Output is correct
9 Correct 1 ms 1116 KB Output is correct
10 Correct 1 ms 1112 KB Output is correct
11 Correct 2 ms 1116 KB Output is correct
12 Correct 1 ms 1116 KB Output is correct
13 Correct 1 ms 1116 KB Output is correct
14 Correct 1 ms 1116 KB Output is correct
15 Incorrect 1 ms 1112 KB Output isn't correct
16 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1116 KB Output is correct
2 Correct 1 ms 1368 KB Output is correct
3 Correct 1 ms 1116 KB Output is correct
4 Correct 1 ms 1116 KB Output is correct
5 Correct 1 ms 1112 KB Output is correct
6 Correct 1 ms 1116 KB Output is correct
7 Correct 1 ms 1116 KB Output is correct
8 Correct 1 ms 1176 KB Output is correct
9 Correct 1 ms 1116 KB Output is correct
10 Correct 1 ms 1112 KB Output is correct
11 Correct 2 ms 1116 KB Output is correct
12 Correct 1 ms 1116 KB Output is correct
13 Correct 1 ms 1116 KB Output is correct
14 Correct 1 ms 1116 KB Output is correct
15 Incorrect 1 ms 1112 KB Output isn't correct
16 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1116 KB Output is correct
2 Correct 1 ms 1368 KB Output is correct
3 Correct 1 ms 1116 KB Output is correct
4 Correct 1 ms 1116 KB Output is correct
5 Correct 1 ms 1112 KB Output is correct
6 Correct 1 ms 1116 KB Output is correct
7 Correct 1 ms 1116 KB Output is correct
8 Correct 1 ms 1176 KB Output is correct
9 Correct 1 ms 1116 KB Output is correct
10 Correct 1 ms 1112 KB Output is correct
11 Correct 2 ms 1116 KB Output is correct
12 Correct 1 ms 1116 KB Output is correct
13 Correct 1 ms 1116 KB Output is correct
14 Correct 1 ms 1116 KB Output is correct
15 Incorrect 1 ms 1112 KB Output isn't correct
16 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1116 KB Output is correct
2 Correct 1 ms 1116 KB Output is correct
3 Correct 1 ms 1116 KB Output is correct
4 Correct 183 ms 47960 KB Output is correct
5 Correct 128 ms 48448 KB Output is correct
6 Correct 101 ms 48932 KB Output is correct
7 Correct 82 ms 47624 KB Output is correct
8 Correct 69 ms 38940 KB Output is correct
9 Correct 1 ms 1116 KB Output is correct
10 Correct 1 ms 1368 KB Output is correct
11 Correct 1 ms 1116 KB Output is correct
12 Correct 1 ms 1116 KB Output is correct
13 Correct 1 ms 1112 KB Output is correct
14 Correct 1 ms 1116 KB Output is correct
15 Correct 1 ms 1116 KB Output is correct
16 Correct 1 ms 1176 KB Output is correct
17 Correct 1 ms 1116 KB Output is correct
18 Correct 1 ms 1112 KB Output is correct
19 Correct 2 ms 1116 KB Output is correct
20 Correct 1 ms 1116 KB Output is correct
21 Correct 1 ms 1116 KB Output is correct
22 Correct 1 ms 1116 KB Output is correct
23 Incorrect 1 ms 1112 KB Output isn't correct
24 Halted 0 ms 0 KB -