Submission #917158

# Submission time Handle Problem Language Result Execution time Memory
917158 2024-01-27T10:42:48 Z GrindMachine Cats or Dogs (JOI18_catdog) C++17
100 / 100
551 ms 20308 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*

refs:
edi
https://oj.uz/submission/374896

tree dp for 38 points:
r[u] = sum(min(r[v],b[v]+1))
b[u] = sum(min(r[v]+1,b[v]))

key idea:
when a node is changed, only the dp values of its parents are affected
only update parents
=> hld

if the problem was on a line, we could use a segtree
each node [l,r] contains dp[x][y], which denotes the min cost to achieve comp[l] = x and comp[r] = y
can be merged easily

how to extend this idea to a tree?

each node belongs to exactly 1 chain in the hld
when processing a chain, only dp values in the chain will change
some nodes on the chain may have children that belong to other chains
for such children, their values wont change, so their contribution to dp[u][0/1] is fixed
because these values dont change, we can put them in the segtree leaf that denotes u
i.e for the segtree leaf that denotes u,
dp[0][0] = sum(min(r[v],b[v]+1)), v doesnt belong to the same chain as u
dp[1][1] = sum(min(r[v]+1,b[v])), v doesnt belong to the same chain as u
dp[0][1] = dp[1][0] = inf (range only contains 1 node, so starting comp = ending comp)

with all these values in the segtree, find the value at the root of the chain
now when we move up, we move to another chain
so we have to update the new dp values of the parent of the current chain (which may or may not be the root of the new chain)
tnis can be done by adding/subtracting some value from the dp values of the parent and then doing a point update on the segtree
repeat the same process for all chains
at the end of the process, we would have updated the dp chain that contains the root of the tree (which is 1)
when we want to get the answer, just find the dp of the chain that contains the root and return the min value of dp[x][y]

*/

const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

template<typename T>
struct segtree {
    // https://codeforces.com/blog/entry/18051

    /*=======================================================*/

    struct data {
        int dp[2][2];
        bool active;

        data(){
            rep(i,2){
                rep(j,2){
                    dp[i][j] = inf1;
                }
            }
            active = false;
        }
    };

    data neutral = data();

    data merge(data &left, data &right) {
        if(!left.active and !right.active) return left;
        if(!right.active) return left;
        if(!left.active) return right;
        
        data curr;
        curr.active = true;

        rep(i,2){
            rep(j,2){
                rep(k,2){
                    rep(l,2){
                        amin(curr.dp[i][l],left.dp[i][j]+right.dp[k][l]+(j!=k));
                    }
                }
            }
        }

        return curr;
    }

    void create(int i, T v) {

    }

    void modify(int i, T v) {
        tr[i] = neutral;
        tr[i].dp[0][0] = v.ff;
        tr[i].dp[1][1] = v.ss;
        tr[i].active = true;
    }

    /*=======================================================*/

    int n;
    vector<data> tr;

    segtree() {

    }

    segtree(int siz) {
        init(siz);
    }

    void init(int siz) {
        n = siz;
        tr.assign(2 * n, neutral);
    }

    void build(vector<T> &a, int siz) {
        rep(i, siz) create(i + n, a[i]);
        rev(i, n - 1, 1) tr[i] = merge(tr[i << 1], tr[i << 1 | 1]);
    }

    void pupd(int i, T v) {
        modify(i + n, v);
        for (i = (i + n) >> 1; i; i >>= 1) tr[i] = merge(tr[i << 1], tr[i << 1 | 1]);
    }

    data query(int l, int r) {
        data resl = neutral, resr = neutral;

        for (l += n, r += n; l <= r; l >>= 1, r >>= 1) {
            if (l & 1) resl = merge(resl, tr[l++]);
            if (!(r & 1)) resr = merge(tr[r--], resr);
        }

        return merge(resl, resr);
    }
};

vector<int> adj[N];
vector<int> a(N); // 0 = none, 1 = cat, 2 = dog
vector<int> subsiz(N);
vector<int> depth(N), par(N);

void dfs1(int u, int p){
    subsiz[u] = 1;
    if(p != -1) par[u] = p;
    trav(v,adj[u]){
        if(v == p) conts;
        depth[v] = depth[u]+1;
        dfs1(v,u);
        subsiz[u] += subsiz[v];
    }
}

vector<int> pos(N), head(N), chain_siz(N);
int timer = 1;

void dfs2(int u, int p, int h){
    pos[u] = timer++;
    head[u] = h;
    chain_siz[h]++;

    pii mx = {-inf1,-1};
    trav(v,adj[u]){
        if(v == p) conts;
        pii px = {subsiz[v],v};
        amax(mx,px);
    }

    int heavy = mx.ss;
    if(heavy != -1){
        dfs2(heavy,u,h);
    }

    trav(v,adj[u]){
        if(v == p or v == heavy) conts;
        dfs2(v,u,v);
    }
}

segtree<pii> st;

void initialize(int n, std::vector<int> A, std::vector<int> B) {
    rep(i,n-1){
        int u = A[i], v = B[i];
        adj[u].pb(v), adj[v].pb(u);
    }

    dfs1(1,-1);
    dfs2(1,-1,1);
    st = segtree<pii>(n+5);
    rep1(i,n) st.pupd(i,{0,0});
}

vector<int> sum1(N), sum2(N);

int get_ans(){
    auto dp = st.query(pos[1],pos[1]+chain_siz[1]-1).dp;

    int ans = inf1;

    rep(i,2){
        rep(j,2){
            amin(ans,dp[i][j]);
        }
    }

    return ans;
}

void rem(int u){
    while(u){
        if(u == head[u]){
            auto dp = st.query(pos[u],pos[u]+chain_siz[u]-1).dp;
            int cat = min(dp[0][0],dp[0][1]);
            int dog = min(dp[1][0],dp[1][1]);
            sum1[par[u]] -= min(cat,dog+1);
            sum2[par[u]] -= min(cat+1,dog);
            u = par[u];
        }
        else{
            u = head[u];
        }
    }
}

void add(int u){
    while(u){
        {
            pii px = {sum1[u],sum2[u]};

            if(a[u] == 1){
                px.ss = inf1;
            }
            else if(a[u] == 2){
                px.ff = inf1;
            }

            st.pupd(pos[u],px);
        }

        if(u == head[u]){
            auto dp = st.query(pos[u],pos[u]+chain_siz[u]-1).dp;
            int cat = min(dp[0][0],dp[0][1]);
            int dog = min(dp[1][0],dp[1][1]);
            sum1[par[u]] += min(cat,dog+1);
            sum2[par[u]] += min(cat+1,dog);
            u = par[u];
        }
        else{
            u = head[u];
        }
    }
}

void change_state(int u, int val){
    rem(u);
    a[u] = val;
    add(u);
}
 
int cat(int v) {
    change_state(v,1);
    return get_ans();
}
 
int dog(int v) {
    change_state(v,2);
    return get_ans();
}
 
int neighbor(int v) {
    change_state(v,0);
    return get_ans();
}

Compilation message

catdog.cpp: In function 'int get_ans()':
catdog.cpp:254:17: warning: '<anonymous>[0]' is used uninitialized in this function [-Wuninitialized]
  254 |             amin(ans,dp[i][j]);
      |             ~~~~^~~~~~~~~~~~~~
catdog.cpp:254:17: warning: '<anonymous>[1]' is used uninitialized in this function [-Wuninitialized]
catdog.cpp:254:17: warning: '*((void*)(&<anonymous>)+8)[0]' is used uninitialized in this function [-Wuninitialized]
catdog.cpp:254:17: warning: '*((void*)(&<anonymous>)+8)[1]' is used uninitialized in this function [-Wuninitialized]
# Verdict Execution time Memory Grader output
1 Correct 2 ms 6232 KB Output is correct
2 Correct 3 ms 6236 KB Output is correct
3 Correct 2 ms 6236 KB Output is correct
4 Correct 3 ms 6232 KB Output is correct
5 Correct 3 ms 6236 KB Output is correct
6 Correct 3 ms 6236 KB Output is correct
7 Correct 2 ms 6236 KB Output is correct
8 Correct 3 ms 6232 KB Output is correct
9 Correct 3 ms 6236 KB Output is correct
10 Correct 3 ms 6236 KB Output is correct
11 Correct 3 ms 6236 KB Output is correct
12 Correct 3 ms 6232 KB Output is correct
13 Correct 3 ms 6236 KB Output is correct
14 Correct 3 ms 6236 KB Output is correct
15 Correct 3 ms 6228 KB Output is correct
16 Correct 3 ms 6236 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 6232 KB Output is correct
2 Correct 3 ms 6236 KB Output is correct
3 Correct 2 ms 6236 KB Output is correct
4 Correct 3 ms 6232 KB Output is correct
5 Correct 3 ms 6236 KB Output is correct
6 Correct 3 ms 6236 KB Output is correct
7 Correct 2 ms 6236 KB Output is correct
8 Correct 3 ms 6232 KB Output is correct
9 Correct 3 ms 6236 KB Output is correct
10 Correct 3 ms 6236 KB Output is correct
11 Correct 3 ms 6236 KB Output is correct
12 Correct 3 ms 6232 KB Output is correct
13 Correct 3 ms 6236 KB Output is correct
14 Correct 3 ms 6236 KB Output is correct
15 Correct 3 ms 6228 KB Output is correct
16 Correct 3 ms 6236 KB Output is correct
17 Correct 4 ms 6236 KB Output is correct
18 Correct 6 ms 6236 KB Output is correct
19 Correct 3 ms 6236 KB Output is correct
20 Correct 2 ms 6236 KB Output is correct
21 Correct 3 ms 6232 KB Output is correct
22 Correct 3 ms 6316 KB Output is correct
23 Correct 4 ms 6236 KB Output is correct
24 Correct 4 ms 6236 KB Output is correct
25 Correct 4 ms 6236 KB Output is correct
26 Correct 4 ms 6236 KB Output is correct
27 Correct 3 ms 6236 KB Output is correct
28 Correct 3 ms 6236 KB Output is correct
29 Correct 4 ms 6236 KB Output is correct
30 Correct 3 ms 6236 KB Output is correct
31 Correct 3 ms 6236 KB Output is correct
32 Correct 3 ms 6236 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 6232 KB Output is correct
2 Correct 3 ms 6236 KB Output is correct
3 Correct 2 ms 6236 KB Output is correct
4 Correct 3 ms 6232 KB Output is correct
5 Correct 3 ms 6236 KB Output is correct
6 Correct 3 ms 6236 KB Output is correct
7 Correct 2 ms 6236 KB Output is correct
8 Correct 3 ms 6232 KB Output is correct
9 Correct 3 ms 6236 KB Output is correct
10 Correct 3 ms 6236 KB Output is correct
11 Correct 3 ms 6236 KB Output is correct
12 Correct 3 ms 6232 KB Output is correct
13 Correct 3 ms 6236 KB Output is correct
14 Correct 3 ms 6236 KB Output is correct
15 Correct 3 ms 6228 KB Output is correct
16 Correct 3 ms 6236 KB Output is correct
17 Correct 4 ms 6236 KB Output is correct
18 Correct 6 ms 6236 KB Output is correct
19 Correct 3 ms 6236 KB Output is correct
20 Correct 2 ms 6236 KB Output is correct
21 Correct 3 ms 6232 KB Output is correct
22 Correct 3 ms 6316 KB Output is correct
23 Correct 4 ms 6236 KB Output is correct
24 Correct 4 ms 6236 KB Output is correct
25 Correct 4 ms 6236 KB Output is correct
26 Correct 4 ms 6236 KB Output is correct
27 Correct 3 ms 6236 KB Output is correct
28 Correct 3 ms 6236 KB Output is correct
29 Correct 4 ms 6236 KB Output is correct
30 Correct 3 ms 6236 KB Output is correct
31 Correct 3 ms 6236 KB Output is correct
32 Correct 3 ms 6236 KB Output is correct
33 Correct 313 ms 11392 KB Output is correct
34 Correct 107 ms 11856 KB Output is correct
35 Correct 292 ms 10148 KB Output is correct
36 Correct 473 ms 15004 KB Output is correct
37 Correct 20 ms 8792 KB Output is correct
38 Correct 551 ms 16000 KB Output is correct
39 Correct 508 ms 15936 KB Output is correct
40 Correct 484 ms 15936 KB Output is correct
41 Correct 512 ms 15888 KB Output is correct
42 Correct 495 ms 16060 KB Output is correct
43 Correct 483 ms 15936 KB Output is correct
44 Correct 480 ms 16068 KB Output is correct
45 Correct 478 ms 15952 KB Output is correct
46 Correct 489 ms 15768 KB Output is correct
47 Correct 487 ms 15760 KB Output is correct
48 Correct 129 ms 13260 KB Output is correct
49 Correct 142 ms 15048 KB Output is correct
50 Correct 50 ms 8272 KB Output is correct
51 Correct 57 ms 9688 KB Output is correct
52 Correct 25 ms 8028 KB Output is correct
53 Correct 215 ms 15068 KB Output is correct
54 Correct 170 ms 10076 KB Output is correct
55 Correct 423 ms 13132 KB Output is correct
56 Correct 261 ms 10652 KB Output is correct
57 Correct 352 ms 14420 KB Output is correct
58 Correct 30 ms 9948 KB Output is correct
59 Correct 58 ms 9304 KB Output is correct
60 Correct 129 ms 14116 KB Output is correct
61 Correct 143 ms 14516 KB Output is correct
62 Correct 91 ms 12660 KB Output is correct
63 Correct 64 ms 12656 KB Output is correct
64 Correct 68 ms 13660 KB Output is correct
65 Correct 86 ms 18104 KB Output is correct
66 Correct 97 ms 9316 KB Output is correct
67 Correct 89 ms 14772 KB Output is correct
68 Correct 190 ms 18416 KB Output is correct
69 Correct 46 ms 7504 KB Output is correct
70 Correct 11 ms 6516 KB Output is correct
71 Correct 87 ms 11652 KB Output is correct
72 Correct 132 ms 16412 KB Output is correct
73 Correct 281 ms 20308 KB Output is correct
74 Correct 301 ms 18008 KB Output is correct
75 Correct 233 ms 20208 KB Output is correct
76 Correct 216 ms 19472 KB Output is correct
77 Correct 302 ms 18632 KB Output is correct