Submission #917157

# Submission time Handle Problem Language Result Execution time Memory
917157 2024-01-27T10:41:40 Z GrindMachine Cats or Dogs (JOI18_catdog) C++17
100 / 100
563 ms 22352 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*

refs:
edi
https://oj.uz/submission/374896

tree dp for 38 points:
r[u] = sum(min(r[v],b[v]+1))
b[u] = sum(min(r[v]+1,b[v]))

key idea:
when a node is changed, only the dp values of its parents are affected
only update parents
=> hld

if the problem was on a line, we could use a segtree
each node [l,r] contains dp[x][y], which denotes the min cost to achieve comp[l] = x and comp[r] = y
can be merged easily

how to extend this idea to a tree?

each node belongs to exactly 1 chain in the hld
when processing a chain, only dp values in the chain will change
some nodes on the chain may have children that belong to other chains
for such children, their values wont change, so their contribution to dp[u][0/1] is fixed
because these values dont change, we can put them in the segtree leaf that denotes u
i.e for the segtree leaf that denotes u,
dp[0][0] = sum(min(r[v],b[v]+1)), v doesnt belong to the same chain as u
dp[1][1] = sum(min(r[v]+1,b[v])), v doesnt belong to the same chain as u
dp[0][1] = dp[1][0] = inf (range only contains 1 node, so starting comp = ending comp)

with all these values in the segtree, find the value at the root of the chain
now when we move up, we move to another chain
so we have to update the new dp values of the parent of the current chain (which may or may not be the root of the new chain)
tnis can be done by adding/subtracting some value from the dp values of the parent and then doing a point update on the segtree
repeat the same process for all chains
at the end of the process, we would have updated the dp chain that contains the root of the tree (which is 1)
when we want to get the answer, just find the dp of the chain that contains the root and return the min value of dp[x][y]

*/

const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

template<typename T>
struct segtree {
    // https://codeforces.com/blog/entry/18051

    /*=======================================================*/

    struct data {
        array<array<int,2>,2> dp;
        bool active;

        data(){
            rep(i,2){
                rep(j,2){
                    dp[i][j] = inf1;
                }
            }
            active = false;
        }
    };

    data neutral = data();

    data merge(data &left, data &right) {
        if(!left.active and !right.active) return left;
        if(!right.active) return left;
        if(!left.active) return right;
        
        data curr;
        curr.active = true;

        rep(i,2){
            rep(j,2){
                rep(k,2){
                    rep(l,2){
                        amin(curr.dp[i][l],left.dp[i][j]+right.dp[k][l]+(j!=k));
                    }
                }
            }
        }

        return curr;
    }

    void create(int i, T v) {

    }

    void modify(int i, T v) {
        tr[i] = neutral;
        tr[i].dp[0][0] = v.ff;
        tr[i].dp[1][1] = v.ss;
        tr[i].active = true;
    }

    /*=======================================================*/

    int n;
    vector<data> tr;

    segtree() {

    }

    segtree(int siz) {
        init(siz);
    }

    void init(int siz) {
        n = siz;
        tr.assign(2 * n, neutral);
    }

    void build(vector<T> &a, int siz) {
        rep(i, siz) create(i + n, a[i]);
        rev(i, n - 1, 1) tr[i] = merge(tr[i << 1], tr[i << 1 | 1]);
    }

    void pupd(int i, T v) {
        modify(i + n, v);
        for (i = (i + n) >> 1; i; i >>= 1) tr[i] = merge(tr[i << 1], tr[i << 1 | 1]);
    }

    data query(int l, int r) {
        data resl = neutral, resr = neutral;

        for (l += n, r += n; l <= r; l >>= 1, r >>= 1) {
            if (l & 1) resl = merge(resl, tr[l++]);
            if (!(r & 1)) resr = merge(tr[r--], resr);
        }

        return merge(resl, resr);
    }
};

vector<int> adj[N];
vector<int> a(N); // 0 = none, 1 = cat, 2 = dog
vector<int> subsiz(N);
vector<int> depth(N), par(N);

void dfs1(int u, int p){
    subsiz[u] = 1;
    if(p != -1) par[u] = p;
    trav(v,adj[u]){
        if(v == p) conts;
        depth[v] = depth[u]+1;
        dfs1(v,u);
        subsiz[u] += subsiz[v];
    }
}

vector<int> pos(N), head(N), chain_siz(N);
int timer = 1;

void dfs2(int u, int p, int h){
    pos[u] = timer++;
    head[u] = h;
    chain_siz[h]++;

    pii mx = {-inf1,-1};
    trav(v,adj[u]){
        if(v == p) conts;
        pii px = {subsiz[v],v};
        amax(mx,px);
    }

    int heavy = mx.ss;
    if(heavy != -1){
        dfs2(heavy,u,h);
    }

    trav(v,adj[u]){
        if(v == p or v == heavy) conts;
        dfs2(v,u,v);
    }
}

segtree<pii> st;

void initialize(int n, std::vector<int> A, std::vector<int> B) {
    rep(i,n-1){
        int u = A[i], v = B[i];
        adj[u].pb(v), adj[v].pb(u);
    }

    dfs1(1,-1);
    dfs2(1,-1,1);
    st = segtree<pii>(n+5);
    rep1(i,n) st.pupd(i,{0,0});
}

vector<int> sum1(N), sum2(N);

int get_ans(){
    auto dp = st.query(pos[1],pos[1]+chain_siz[1]-1).dp;

    int ans = inf1;

    rep(i,2){
        rep(j,2){
            amin(ans,dp[i][j]);
        }
    }

    return ans;
}

void rem(int u){
    while(u){
        if(u == head[u]){
            auto dp = st.query(pos[u],pos[u]+chain_siz[u]-1).dp;
            int cat = min(dp[0][0],dp[0][1]);
            int dog = min(dp[1][0],dp[1][1]);
            sum1[par[u]] -= min(cat,dog+1);
            sum2[par[u]] -= min(cat+1,dog);
            u = par[u];
        }
        else{
            u = head[u];
        }
    }
}

void add(int u){
    while(u){
        {
            pii px = {sum1[u],sum2[u]};

            if(a[u] == 1){
                px.ss = inf1;
            }
            else if(a[u] == 2){
                px.ff = inf1;
            }

            st.pupd(pos[u],px);
        }

        if(u == head[u]){
            auto dp = st.query(pos[u],pos[u]+chain_siz[u]-1).dp;
            int cat = min(dp[0][0],dp[0][1]);
            int dog = min(dp[1][0],dp[1][1]);
            sum1[par[u]] += min(cat,dog+1);
            sum2[par[u]] += min(cat+1,dog);
            u = par[u];
        }
        else{
            u = head[u];
        }
    }
}

void change_state(int u, int val){
    rem(u);
    a[u] = val;
    add(u);
}
 
int cat(int v) {
    change_state(v,1);
    return get_ans();
}
 
int dog(int v) {
    change_state(v,2);
    return get_ans();
}
 
int neighbor(int v) {
    change_state(v,0);
    return get_ans();
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 6236 KB Output is correct
2 Correct 2 ms 6336 KB Output is correct
3 Correct 2 ms 6236 KB Output is correct
4 Correct 2 ms 6488 KB Output is correct
5 Correct 3 ms 6236 KB Output is correct
6 Correct 2 ms 6236 KB Output is correct
7 Correct 3 ms 6236 KB Output is correct
8 Correct 2 ms 6236 KB Output is correct
9 Correct 3 ms 6232 KB Output is correct
10 Correct 2 ms 6236 KB Output is correct
11 Correct 2 ms 6232 KB Output is correct
12 Correct 2 ms 6232 KB Output is correct
13 Correct 3 ms 6232 KB Output is correct
14 Correct 2 ms 6236 KB Output is correct
15 Correct 2 ms 6236 KB Output is correct
16 Correct 2 ms 6328 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 6236 KB Output is correct
2 Correct 2 ms 6336 KB Output is correct
3 Correct 2 ms 6236 KB Output is correct
4 Correct 2 ms 6488 KB Output is correct
5 Correct 3 ms 6236 KB Output is correct
6 Correct 2 ms 6236 KB Output is correct
7 Correct 3 ms 6236 KB Output is correct
8 Correct 2 ms 6236 KB Output is correct
9 Correct 3 ms 6232 KB Output is correct
10 Correct 2 ms 6236 KB Output is correct
11 Correct 2 ms 6232 KB Output is correct
12 Correct 2 ms 6232 KB Output is correct
13 Correct 3 ms 6232 KB Output is correct
14 Correct 2 ms 6236 KB Output is correct
15 Correct 2 ms 6236 KB Output is correct
16 Correct 2 ms 6328 KB Output is correct
17 Correct 4 ms 6236 KB Output is correct
18 Correct 4 ms 6232 KB Output is correct
19 Correct 3 ms 6236 KB Output is correct
20 Correct 3 ms 6332 KB Output is correct
21 Correct 3 ms 6236 KB Output is correct
22 Correct 3 ms 6232 KB Output is correct
23 Correct 4 ms 6232 KB Output is correct
24 Correct 4 ms 6236 KB Output is correct
25 Correct 4 ms 6340 KB Output is correct
26 Correct 3 ms 6236 KB Output is correct
27 Correct 3 ms 6236 KB Output is correct
28 Correct 3 ms 6236 KB Output is correct
29 Correct 4 ms 6236 KB Output is correct
30 Correct 3 ms 6644 KB Output is correct
31 Correct 3 ms 6236 KB Output is correct
32 Correct 3 ms 6236 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 6236 KB Output is correct
2 Correct 2 ms 6336 KB Output is correct
3 Correct 2 ms 6236 KB Output is correct
4 Correct 2 ms 6488 KB Output is correct
5 Correct 3 ms 6236 KB Output is correct
6 Correct 2 ms 6236 KB Output is correct
7 Correct 3 ms 6236 KB Output is correct
8 Correct 2 ms 6236 KB Output is correct
9 Correct 3 ms 6232 KB Output is correct
10 Correct 2 ms 6236 KB Output is correct
11 Correct 2 ms 6232 KB Output is correct
12 Correct 2 ms 6232 KB Output is correct
13 Correct 3 ms 6232 KB Output is correct
14 Correct 2 ms 6236 KB Output is correct
15 Correct 2 ms 6236 KB Output is correct
16 Correct 2 ms 6328 KB Output is correct
17 Correct 4 ms 6236 KB Output is correct
18 Correct 4 ms 6232 KB Output is correct
19 Correct 3 ms 6236 KB Output is correct
20 Correct 3 ms 6332 KB Output is correct
21 Correct 3 ms 6236 KB Output is correct
22 Correct 3 ms 6232 KB Output is correct
23 Correct 4 ms 6232 KB Output is correct
24 Correct 4 ms 6236 KB Output is correct
25 Correct 4 ms 6340 KB Output is correct
26 Correct 3 ms 6236 KB Output is correct
27 Correct 3 ms 6236 KB Output is correct
28 Correct 3 ms 6236 KB Output is correct
29 Correct 4 ms 6236 KB Output is correct
30 Correct 3 ms 6644 KB Output is correct
31 Correct 3 ms 6236 KB Output is correct
32 Correct 3 ms 6236 KB Output is correct
33 Correct 354 ms 12516 KB Output is correct
34 Correct 113 ms 12884 KB Output is correct
35 Correct 307 ms 11080 KB Output is correct
36 Correct 509 ms 16752 KB Output is correct
37 Correct 20 ms 9052 KB Output is correct
38 Correct 552 ms 17804 KB Output is correct
39 Correct 538 ms 17812 KB Output is correct
40 Correct 518 ms 17728 KB Output is correct
41 Correct 563 ms 17988 KB Output is correct
42 Correct 489 ms 17984 KB Output is correct
43 Correct 507 ms 17948 KB Output is correct
44 Correct 541 ms 17728 KB Output is correct
45 Correct 500 ms 17816 KB Output is correct
46 Correct 559 ms 17800 KB Output is correct
47 Correct 503 ms 17684 KB Output is correct
48 Correct 132 ms 14608 KB Output is correct
49 Correct 153 ms 16664 KB Output is correct
50 Correct 53 ms 8600 KB Output is correct
51 Correct 61 ms 10196 KB Output is correct
52 Correct 26 ms 8360 KB Output is correct
53 Correct 241 ms 16724 KB Output is correct
54 Correct 179 ms 10840 KB Output is correct
55 Correct 457 ms 14820 KB Output is correct
56 Correct 312 ms 11680 KB Output is correct
57 Correct 379 ms 16208 KB Output is correct
58 Correct 31 ms 10456 KB Output is correct
59 Correct 61 ms 10064 KB Output is correct
60 Correct 134 ms 15572 KB Output is correct
61 Correct 174 ms 16068 KB Output is correct
62 Correct 89 ms 14036 KB Output is correct
63 Correct 66 ms 13396 KB Output is correct
64 Correct 68 ms 14416 KB Output is correct
65 Correct 86 ms 19252 KB Output is correct
66 Correct 121 ms 9808 KB Output is correct
67 Correct 90 ms 15516 KB Output is correct
68 Correct 197 ms 20052 KB Output is correct
69 Correct 51 ms 7740 KB Output is correct
70 Correct 14 ms 6488 KB Output is correct
71 Correct 92 ms 12376 KB Output is correct
72 Correct 132 ms 17496 KB Output is correct
73 Correct 299 ms 22352 KB Output is correct
74 Correct 308 ms 20040 KB Output is correct
75 Correct 246 ms 22100 KB Output is correct
76 Correct 227 ms 21420 KB Output is correct
77 Correct 322 ms 20304 KB Output is correct