답안 #915603

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
915603 2024-01-24T10:07:29 Z devkudawla Just Long Neckties (JOI20_ho_t1) C++17
100 / 100
198 ms 21880 KB
// AUTHOR->DEV KUDAWLA
//----------------------------------------------------
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
typedef tree<long long, null_type, less<long long>, rb_tree_tag, tree_order_statistics_node_update> ordered_set; // find_by_order(it return an iterator input is a value), order_of_key(input is index)
typedef tree<long long, null_type, less_equal<int>, rb_tree_tag, tree_order_statistics_node_update> ordered_multiset;
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#define ll long long int
#define vl vector<long long>
#define nline cout << "\n"
#define n_digit(n) (int)log10(n) + 1
#define msb(n) (int)(log2(n)) + 1
// it is 1 based
#define pll pair<ll, ll>
#define all(x) x.begin(), x.end()
#define ternary(a, b, c) ((a) ? (b) : (c))
#define yesno(a) a ? cout << "Yes" : cout << "No"
#define sroot(a) sqrt((long double)a)
#define Max(a, b) max((ll)a, (ll)b)
#define Min(a, b) min((ll)a, (ll)b)
//----------------------------------------------------
template <class T1, class T2>
ostream &operator<<(std::ostream &os, pair<T1, T2> &st)
{
    cout << "{ " << st.first << " " << st.second << " }";
    return os;
}
template <class T>
istream &operator>>(istream &is, vector<T> &v)
{
    int n = v.size();
    for (int i = 0; i < n; i++)
        is >> v[i];
    return is;
}
template <class T>
istream &operator>>(istream &is, vector<vector<T>> &v)
{
    int n = v.size();
    int m = v[0].size();
    for (int i = 0; i < n; i++)
        for (int j = 0; j < m; j++)
            is >> v[i][j];
    return is;
}
template <class T>
ostream &operator<<(std::ostream &os, vector<T> &v)
{
    int n = v.size();
    for (int i = 0; i < n; i++)
        os << v[i] << ((i == n - 1) ? "\n" : " ");
    return os;
}
template <class T>
ostream &operator<<(std::ostream &os, vector<vector<T>> &v)
{
    int n = v.size();
    int m = v[0].size();
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < m; j++)
            os << v[i][j] << " ";
        os << "\n";
    }
    return os;
}
template <class T>
ostream &operator<<(std::ostream &os, set<T> &st)
{
    cout << "---------------------------------\n";
    for (auto i : st)
        cout << i << " ";
    nline;
    cout << "---------------------------------\n";
    return os;
}
template <class T>
ostream &operator<<(std::ostream &os, multiset<T> &st)
{
    cout << "---------------------------------\n";
    for (auto i : st)
        cout << i << " ";
    nline;
    cout << "---------------------------------\n";
    return os;
}
template <class T1, class T2>
ostream &operator<<(std::ostream &os, map<T1, T2> &st)
{
    cout << "-------------------------------\n";
    auto x = st.begin();
    while (x != st.end())
    {
        cout << x->first;
        cout << "  -> ";
        cout << x->second;
        nline;
        x++;
    }
    cout << "-------------------------------\n";
    return os;
}
template <class T>
vector<T> add(vector<T> v1, vector<T> v2)
{
    vector<T> v3 = v1;
    for (ll i = 0; i < v2.size(); i++)
        v3.push_back(v2[i]);
    return v3;
}
template <int D, typename T>
struct Vector : public vector<Vector<D - 1, T>>
{
    static_assert(D >= 1, "Vector dimension must be greater than zero!");
    template <typename U, typename... Args>
    Vector(U n = U(), Args... args) : vector<Vector<D - 1, T>>(n, Vector<D - 1, T>(args...)) {}
};
template <typename T>
struct Vector<1, T> : public vector<T>
{
    template <typename... Args>
    Vector(Args... args) : vector<T>(args...) {}
};
inline ll power2(ll n)
{
    ll answer = 0;
    if (n != 0)
        answer = msb(((ll)n) ^ ((ll)(n - 1))) - 1;
    return answer;
}
inline ll indexOf(ordered_multiset &st, ll value)
{
    return st.order_of_key(value);
}
inline ll valueAt(ordered_multiset &st, ll index)
{
    return *st.find_by_order(index);
}
inline ll indexOf(ordered_set &st, ll value)
{
    return st.order_of_key(value);
}
inline ll valueAt(ordered_set &st, ll index)
{
    return *st.find_by_order(index);
}
template <class T>
void Distinct(T &v, bool sorting = true)
{
    if (sorting)
        sort(begin(v), end(v));
    v.resize(unique(begin(v), end(v)) - begin(v));
}
//----------------------------------------------------
const ll N1 = 1000000007;
const ll N2 = 998244353;
//----------------------------------------------------
// MODULAR ARITHMETIC
inline ll expo(ll a, ll b, ll mod = LONG_LONG_MAX)
{
    ll res = 1;
    while (b > 0)
    {
        if (b & 1)
            res = ((__int128_t)res * a) % mod;
        a = ((__int128_t)a * a) % mod;
        b = b >> 1;
    }
    return res;
}
inline ll mminvprime(ll a, ll b) { return expo(a, b - 2, b); } // FOR PRIME
inline ll mod_add(ll a, ll b, ll m = N1)
{
    a = a % m;
    b = b % m;
    return (((a + b) % m) + m) % m;
}
inline ll mod_mul(ll a, ll b, ll m = N1)
{
    a = a % m;
    b = b % m;
    return (((__int128_t)(a * b) % m) + m) % m;
}
inline ll mod_sub(ll a, ll b, ll m = N1)
{
    a = a % m;
    b = b % m;
    return (((a - b) % m) + m) % m;
}
inline ll mod_div(ll a, ll b, ll m = N1)
{
    a = a % m;
    b = b % m;
    return (mod_mul(a, mminvprime(b, m), m) + m) % m;
} // only for prime m
ll ncr(ll n, ll r, bool mod_version = false, ll mod = N1)
{
    ll answer = 0;
    if (n >= r)
    {
        r = Min(r, n - r);
        if (mod_version == true)
        {
            ll a = 1;
            for (ll i = n; i >= n - r + 1; i--)
                a = mod_mul(a, i, mod);
            ll b = 1;
            for (ll i = 1; i <= r; i++)
                b = mod_mul(b, i, mod);
            b = mminvprime(b, mod);
            a = mod_mul(a, b, mod);
            answer = a;
        }
        else
        {
            ll a = 1;
            ll b = 1;
            for (ll i = n; i >= n - r + 1; i--)
            {
                a *= i;
                b *= (n - i + 1);
                ll g = __gcd(a, b);
                a /= g, b /= g;
            }
            answer = a / b;
        }
    }
    return answer;
}
ll factorial(ll n, bool mod_version = false, ll mod = N1)
{
    ll answer = 1;
    if (mod_version == true)
    {
        for (int i = 2; i <= n; i++)
            answer = mod_mul(answer, i, mod);
    }
    else
    {
        for (int i = 2; i <= n; i++)
            answer *= i;
    }
    return answer;
}
bool is_prime(ll a)
{
    if (a == 1)
        return false;
    for (ll i = 2; i * i <= a; i++)
    {
        if (a % i == 0)
            return false;
    }
    return true;
}
//----------------------------------------------------
map<ll, ll> prime_factors(ll n, bool debug = false)
{
    map<ll, ll> answer;
    ll a = n;
    for (ll i = 2; i * i <= a; i++)
        while (a % i == 0)
            answer[i]++, a /= i;
    if (a > 1)
        answer[a]++;
    if (debug)
    {
        for (auto i : answer)
            cout << i.first << " -> " << i.second << "\n";
    }
    return answer;
}
//----------------------------------------------------
// const int n_sieve = (20000008); // O(Nlog(log(N)))
// vector<bool> prime_sieve(n_sieve + 1, true);
void initialise_sieve(vector<bool> &prime_sieve)
{
    prime_sieve[0] = false;
    prime_sieve[1] = false;
    for (ll i = 2; i * i < prime_sieve.size(); i++)
        if (prime_sieve[i] == true)
            for (ll j = 2; j * i < prime_sieve.size(); j++)
                prime_sieve[j * i] = false;
}
//----------------------------------------------------
// #define LOCAL_COMPILER
#ifdef LOCAL_COMPILER
#define dbg(x)            \
    cerr << #x << " -> "; \
    cout << x << "\n";
#endif
#ifndef LOCAL_COMPILER
#define dbg(x)
#endif
//----------------------------------------------------
// CODE STARTS HERE
//----------------------------------------------------
void solve(bool testCases = true)
{
    ll T = 1; //->TEST CASES
    if (testCases)
        cin >> T;
    while (T--)
    {
        ll n;
        cin >> n;
        vector<pll> v(n + 1);
        for (ll i = 0; i < n + 1; i++)
        {
            ll d;
            cin >> d;
            v[i] = {d, i + 1};
        }
        sort(all(v));
        dbg(v);
        vl b(n);
        cin >> b;
        sort(all(b));
        dbg(b);
        vl answer(n + 2, 0);
        multiset<ll> st;
        for (ll i = 0; i < n; i++)
            st.insert(Max(0, v[i].first - b[i]));
        ll index = n;
        answer[v[index].second] = *--st.end();
        dbg(answer);
        for (ll i = n - 1; i >= 0; i--)
        {
            ll d = Max(0, v[i].first - b[i]);
            st.erase(st.find(d));
            d = Max(0, v[index].first - b[i]);
            st.insert(d);
            answer[v[i].second] = *--st.end();
            index = i;
        }
        for (ll i = 1; i <= n + 1; i++)
            cout << answer[i] << " ";
        nline;
    }
    //--------------------------------------------
    //  CODE ENDS HERE
}
//----------------------------------------------------
int main()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
    //------------------------------------------------
    // initialise_sieve(prime_sieve);
    //------------------------------------------------

#ifdef LOCAL_COMPILER
    std::cout << std::fixed << std::setprecision(25);
    std::cerr << std::fixed << std::setprecision(10);
    auto start = std::chrono::high_resolution_clock::now();
#endif

    solve(false);

#ifdef LOCAL_COMPILER
    auto stop = std::chrono::high_resolution_clock::now();
    long double duration = std::chrono::duration_cast<std::chrono::nanoseconds>(stop - start).count();
    std::cerr << "Time taken : " << duration / 1e9 << "s" << std::endl;
#endif
    //------------------------------------------------
    return 0;
}
//----------------------------------------------------

Compilation message

ho_t1.cpp: In function 'void initialise_sieve(std::vector<bool>&)':
ho_t1.cpp:286:34: warning: comparison of integer expressions of different signedness: 'long long int' and 'std::vector<bool>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  286 |             for (ll j = 2; j * i < prime_sieve.size(); j++)
      |                            ~~~~~~^~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 344 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 416 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 0 ms 456 KB Output is correct
11 Correct 1 ms 344 KB Output is correct
12 Correct 0 ms 452 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 344 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 416 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 0 ms 456 KB Output is correct
11 Correct 1 ms 344 KB Output is correct
12 Correct 0 ms 452 KB Output is correct
13 Correct 1 ms 344 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 1 ms 604 KB Output is correct
16 Correct 1 ms 348 KB Output is correct
17 Correct 1 ms 604 KB Output is correct
18 Correct 2 ms 612 KB Output is correct
19 Correct 1 ms 604 KB Output is correct
20 Correct 1 ms 604 KB Output is correct
21 Correct 1 ms 520 KB Output is correct
22 Correct 1 ms 600 KB Output is correct
23 Correct 1 ms 468 KB Output is correct
24 Correct 1 ms 512 KB Output is correct
25 Correct 2 ms 520 KB Output is correct
26 Correct 1 ms 520 KB Output is correct
27 Correct 2 ms 604 KB Output is correct
28 Correct 2 ms 608 KB Output is correct
29 Correct 1 ms 604 KB Output is correct
30 Correct 1 ms 604 KB Output is correct
31 Correct 2 ms 604 KB Output is correct
32 Correct 2 ms 604 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 344 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 416 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 0 ms 456 KB Output is correct
11 Correct 1 ms 344 KB Output is correct
12 Correct 0 ms 452 KB Output is correct
13 Correct 1 ms 344 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 1 ms 604 KB Output is correct
16 Correct 1 ms 348 KB Output is correct
17 Correct 1 ms 604 KB Output is correct
18 Correct 2 ms 612 KB Output is correct
19 Correct 1 ms 604 KB Output is correct
20 Correct 1 ms 604 KB Output is correct
21 Correct 1 ms 520 KB Output is correct
22 Correct 1 ms 600 KB Output is correct
23 Correct 1 ms 468 KB Output is correct
24 Correct 1 ms 512 KB Output is correct
25 Correct 2 ms 520 KB Output is correct
26 Correct 1 ms 520 KB Output is correct
27 Correct 2 ms 604 KB Output is correct
28 Correct 2 ms 608 KB Output is correct
29 Correct 1 ms 604 KB Output is correct
30 Correct 1 ms 604 KB Output is correct
31 Correct 2 ms 604 KB Output is correct
32 Correct 2 ms 604 KB Output is correct
33 Correct 143 ms 20376 KB Output is correct
34 Correct 160 ms 21368 KB Output is correct
35 Correct 144 ms 20460 KB Output is correct
36 Correct 155 ms 21004 KB Output is correct
37 Correct 165 ms 21880 KB Output is correct
38 Correct 150 ms 21420 KB Output is correct
39 Correct 176 ms 20472 KB Output is correct
40 Correct 178 ms 20468 KB Output is correct
41 Correct 176 ms 20600 KB Output is correct
42 Correct 176 ms 20412 KB Output is correct
43 Correct 169 ms 20304 KB Output is correct
44 Correct 140 ms 19848 KB Output is correct
45 Correct 138 ms 19928 KB Output is correct
46 Correct 139 ms 19788 KB Output is correct
47 Correct 118 ms 20344 KB Output is correct
48 Correct 136 ms 20560 KB Output is correct
49 Correct 186 ms 21156 KB Output is correct
50 Correct 188 ms 21032 KB Output is correct
51 Correct 188 ms 20996 KB Output is correct
52 Correct 192 ms 21096 KB Output is correct
53 Correct 198 ms 21000 KB Output is correct