Submission #915279

# Submission time Handle Problem Language Result Execution time Memory
915279 2024-01-23T15:38:16 Z maroonrk Beech Tree (IOI23_beechtree) C++17
100 / 100
1821 ms 239140 KB
#include "beechtree.h"

#ifndef LOCAL
#pragma GCC optimize ("Ofast")
#pragma GCC optimize ("unroll-loops")
#endif

#include <bits/stdc++.h>
using namespace std;

using ll=long long;
//#define int ll

#define rng(i,a,b) for(int i=int(a);i<int(b);i++)
#define rep(i,b) rng(i,0,b)
#define gnr(i,a,b) for(int i=int(b)-1;i>=int(a);i--)
#define per(i,b) gnr(i,0,b)
#define pb push_back
#define eb emplace_back
#define a first
#define b second
#define bg begin()
#define ed end()
#define all(x) x.bg,x.ed
#define si(x) int(x.size())
#ifdef LOCAL
#define dmp(x) cerr<<__LINE__<<" "<<#x<<" "<<x<<endl
#else
#define dmp(x) void(0)
#endif

template<class t,class u> bool chmax(t&a,u b){if(a<b){a=b;return true;}else return false;}
template<class t,class u> bool chmin(t&a,u b){if(b<a){a=b;return true;}else return false;}

template<class t> using vc=vector<t>;
template<class t> using vvc=vc<vc<t>>;

using pi=pair<int,int>;
using vi=vc<int>;

template<class t,class u>
ostream& operator<<(ostream& os,const pair<t,u>& p){
	return os<<"{"<<p.a<<","<<p.b<<"}";
}

template<class t> ostream& operator<<(ostream& os,const vc<t>& v){
	os<<"{";
	for(auto e:v)os<<e<<",";
	return os<<"}";
}

#define mp make_pair
#define mt make_tuple
#define one(x) memset(x,-1,sizeof(x))
#define zero(x) memset(x,0,sizeof(x))
#ifdef LOCAL
void dmpr(ostream&os){os<<endl;}
template<class T,class... Args>
void dmpr(ostream&os,const T&t,const Args&... args){
	os<<t<<" ";
	dmpr(os,args...);
}
#define dmp2(...) dmpr(cerr,__LINE__,##__VA_ARGS__)
#else
#define dmp2(...) void(0)
#endif

using uint=unsigned;
using ull=unsigned long long;

template<class t,size_t n>
ostream& operator<<(ostream&os,const array<t,n>&a){
	return os<<vc<t>(all(a));
}

template<int i,class T>
void print_tuple(ostream&,const T&){
}

template<int i,class T,class H,class ...Args>
void print_tuple(ostream&os,const T&t){
	if(i)os<<",";
	os<<get<i>(t);
	print_tuple<i+1,T,Args...>(os,t);
}

template<class ...Args>
ostream& operator<<(ostream&os,const tuple<Args...>&t){
	os<<"{";
	print_tuple<0,tuple<Args...>,Args...>(os,t);
	return os<<"}";
}

ll read(){
	ll i;
	cin>>i;
	return i;
}

vi readvi(int n,int off=0){
	vi v(n);
	rep(i,n)v[i]=read()+off;
	return v;
}

pi readpi(int off=0){
	int a,b;cin>>a>>b;
	return pi(a+off,b+off);
}

template<class t>
void print_single(t x,int suc=1){
	cout<<x;
	if(suc==1)
		cout<<"\n";
	if(suc==2)
		cout<<" ";
}

template<class t,class u>
void print_single(const pair<t,u>&p,int suc=1){
	print_single(p.a,2);
	print_single(p.b,suc);
}

template<class T>
void print_single(const vector<T>&v,int suc=1){
	rep(i,v.size())
		print_single(v[i],i==int(v.size())-1?suc:2);
}

template<class T>
void print_offset(const vector<T>&v,ll off,int suc=1){
	rep(i,v.size())
		print_single(v[i]+off,i==int(v.size())-1?suc:2);
}

template<class T,size_t N>
void print_single(const array<T,N>&v,int suc=1){
	rep(i,N)
		print_single(v[i],i==int(N)-1?suc:2);
}

template<class T>
void print(const T&t){
	print_single(t);
}

template<class T,class ...Args>
void print(const T&t,const Args&...args){
	print_single(t,2);
	print(args...);
}

string readString(){
	string s;
	cin>>s;
	return s;
}

template<class T>
T sq(const T& t){
	return t*t;
}

void YES(bool ex=true){
	cout<<"YES\n";
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}
void NO(bool ex=true){
	cout<<"NO\n";
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}
void Yes(bool ex=true){
	cout<<"Yes\n";
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}
void No(bool ex=true){
	cout<<"No\n";
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}
//#define CAPITAL
/*
void yes(bool ex=true){
	#ifdef CAPITAL
	cout<<"YES"<<"\n";
	#else
	cout<<"Yes"<<"\n";
	#endif
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}
void no(bool ex=true){
	#ifdef CAPITAL
	cout<<"NO"<<"\n";
	#else
	cout<<"No"<<"\n";
	#endif
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}*/
void possible(bool ex=true){
	#ifdef CAPITAL
	cout<<"POSSIBLE"<<"\n";
	#else
	cout<<"Possible"<<"\n";
	#endif
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}
void impossible(bool ex=true){
	#ifdef CAPITAL
	cout<<"IMPOSSIBLE"<<"\n";
	#else
	cout<<"Impossible"<<"\n";
	#endif
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}

constexpr ll ten(int n){
	return n==0?1:ten(n-1)*10;
}

const ll infLL=LLONG_MAX/3;

#ifdef int
const int inf=infLL;
#else
const int inf=INT_MAX/2-100;
#endif

int topbit(signed t){
	return t==0?-1:31-__builtin_clz(t);
}
int topbit(ll t){
	return t==0?-1:63-__builtin_clzll(t);
}
int topbit(ull t){
	return t==0?-1:63-__builtin_clzll(t);
}
int botbit(signed a){
	return a==0?32:__builtin_ctz(a);
}
int botbit(ll a){
	return a==0?64:__builtin_ctzll(a);
}
int botbit(ull a){
	return a==0?64:__builtin_ctzll(a);
}
int popcount(signed t){
	return __builtin_popcount(t);
}
int popcount(ll t){
	return __builtin_popcountll(t);
}
int popcount(ull t){
	return __builtin_popcountll(t);
}
int bitparity(ll t){
	return __builtin_parityll(t);
}
bool ispow2(int i){
	return i&&(i&-i)==i;
}
ll mask(int i){
	return (ll(1)<<i)-1;
}
ull umask(int i){
	return (ull(1)<<i)-1;
}
ll minp2(ll n){
	if(n<=1)return 1;
	else return ll(1)<<(topbit(n-1)+1);
}

bool inc(int a,int b,int c){
	return a<=b&&b<=c;
}

template<class t> void mkuni(vc<t>&v){
	sort(all(v));
	v.erase(unique(all(v)),v.ed);
}

template<class t> bool isuni(vc<t> v){
	int s=si(v);
	mkuni(v);
	return s==si(v);
}

ll rand_int(ll l, ll r) { //[l, r]
	//#ifdef LOCAL
	static mt19937_64 gen;
	/*#else
	static mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());
	#endif*/
	return uniform_int_distribution<ll>(l, r)(gen);
}

ll rand_int(ll k){ //[0,k)
	return rand_int(0,k-1);
}

template<class t>
void myshuffle(vc<t>&a){
	rep(i,si(a))swap(a[i],a[rand_int(0,i)]);
}

template<class t,class u>
int lwb(const vc<t>&v,const u&a){
	return lower_bound(all(v),a)-v.bg;
}
template<class t,class u>
bool bis(const vc<t>&v,const u&a){
	return binary_search(all(v),a);
}

vvc<int> readGraph(int n,int m){
	vvc<int> g(n);
	rep(i,m){
		int a,b;
		cin>>a>>b;
		//sc.read(a,b);
		a--;b--;
		g[a].pb(b);
		g[b].pb(a);
	}
	return g;
}

vvc<int> readTree(int n){
	return readGraph(n,n-1);
}

template<class t>
vc<t> presum(const vc<t>&a){
	vc<t> s(si(a)+1);
	rep(i,si(a))s[i+1]=s[i]+a[i];
	return s;
}
vc<ll> presum(const vi&a){
	vc<ll> s(si(a)+1);
	rep(i,si(a))s[i+1]=s[i]+a[i];
	return s;
}
//BIT で数列を管理するときに使う (CF850C)
template<class t>
vc<t> predif(vc<t> a){
	gnr(i,1,si(a))a[i]-=a[i-1];
	return a;
}
template<class t>
vvc<ll> imos(const vvc<t>&a){
	int n=si(a),m=si(a[0]);
	vvc<ll> b(n+1,vc<ll>(m+1));
	rep(i,n)rep(j,m)
		b[i+1][j+1]=b[i+1][j]+b[i][j+1]-b[i][j]+a[i][j];
	return b;
}

//verify してないや
void transvvc(int&n,int&m){
	swap(n,m);
}
template<class t,class... Args>
void transvvc(int&n,int&m,vvc<t>&a,Args&...args){
	assert(si(a)==n);
	vvc<t> b(m,vi(n));
	rep(i,n){
		assert(si(a[i])==m);
		rep(j,m)b[j][i]=a[i][j];
	}
	a.swap(b);
	transvvc(n,m,args...);
}
//CF854E
void rotvvc(int&n,int&m){
	swap(n,m);
}
template<class t,class... Args>
void rotvvc(int&n,int&m,vvc<t>&a,Args&...args){
	assert(si(a)==n);
	vvc<t> b(m,vi(n));
	rep(i,n){
		assert(si(a[i])==m);
		rep(j,m)b[m-1-j][i]=a[i][j];
	}
	a.swap(b);
	rotvvc(n,m,args...);
}

//ソートして i 番目が idx[i]
//CF850C
template<class t>
vi sortidx(const vc<t>&a){
	int n=si(a);
	vi idx(n);iota(all(idx),0);
	sort(all(idx),[&](int i,int j){return a[i]<a[j];});
	return idx;
}
//vs[i]=a[idx[i]]
//例えば sortidx で得た idx を使えば単にソート列になって返ってくる
//CF850C
template<class t>
vc<t> a_idx(const vc<t>&a,const vi&idx){
	int n=si(a);
	assert(si(idx)==n);
	vc<t> vs(n);
	rep(i,n)vs[i]=a[idx[i]];
	return vs;
}
//CF850C
vi invperm(const vi&p){
	int n=si(p);
	vi q(n);
	rep(i,n)q[p[i]]=i;
	return q;
}

template<class t,class s=t>
s SUM(const vc<t>&a){
	return accumulate(all(a),s(0));
}
template<class t,size_t K,class s=t>
s SUM(const array<t,K>&a){
	return accumulate(all(a),s(0));
}

template<class t>
t MAX(const vc<t>&a){
	return *max_element(all(a));
}

template<class t>
pair<t,int> MAXi(const vc<t>&a){
	auto itr=max_element(all(a));
	return mp(*itr,itr-a.bg);
}

template<class A>
auto MIN(const A&a){
	return *min_element(all(a));
}

template<class t>
pair<t,int> MINi(const vc<t>&a){
	auto itr=min_element(all(a));
	return mp(*itr,itr-a.bg);
}

vi vid(int n){
	vi res(n);iota(all(res),0);
	return res;
}

template<class S>
void soin(S&s){
	sort(all(s));
}

template<class S,class F>
void soin(S&s,F&&f){
	sort(all(s),forward<F>(f));
}

template<class S>
S soout(S s){
	soin(s);
	return s;
}

template<class S>
void rein(S&s){
	reverse(all(s));
}

template<class S>
S reout(S s){
	rein(s);
	return s;
}

template<class t,class u>
pair<t,u>&operator+=(pair<t,u>&a,pair<t,u> b){
	a.a+=b.a;a.b+=b.b;return a;}
template<class t,class u>
pair<t,u>&operator-=(pair<t,u>&a,pair<t,u> b){
	a.a-=b.a;a.b-=b.b;return a;}
template<class t,class u>
pair<t,u> operator+(pair<t,u> a,pair<t,u> b){return mp(a.a+b.a,a.b+b.b);}
template<class t,class u>
pair<t,u> operator-(pair<t,u> a,pair<t,u> b){return mp(a.a-b.a,a.b-b.b);}
template<class t,class u>
pair<t,u> operator-(pair<t,u> a){return mp(-a.a,-a.b);}
template<class t,class u>
istream&operator>>(istream&is,pair<t,u>&a){
	return is>>a.a>>a.b;
}

template<class t>
t gpp(vc<t>&vs){
	assert(si(vs));
	t res=move(vs.back());
	vs.pop_back();
	return res;
}

template<class t,class u>
void pb(vc<t>&a,const vc<u>&b){
	a.insert(a.ed,all(b));
}

template<class t,class...Args>
vc<t> cat(vc<t> a,Args&&...b){
	(pb(a,forward<Args>(b)),...);
	return a;
}

template<class t,class u>
vc<t>& operator+=(vc<t>&a,u x){
	for(auto&v:a)v+=x;
	return a;
}

template<class t,class u>
vc<t> operator+(vc<t> a,u x){
	return a+=x;
}

template<class t>
vc<t> operator+(const vc<t>&a,const vc<t>&b){
	vc<t> c(max(si(a),si(b)));
	rep(i,si(a))c[i]+=a[i];
	rep(i,si(b))c[i]+=b[i];
	return c;
}

template<class t,class u>
vc<t>& operator-=(vc<t>&a,u x){
	for(auto&v:a)v-=x;
	return a;
}

template<class t,class u>
vc<t>& operator-(vc<t> a,u x){
	return a-=x;
}

template<class t,class u>
void remval(vc<t>&a,const u&v){
	a.erase(remove(all(a),v),a.ed);
}
//消した要素の個数を返してくれる
//UCUP 2-8-F
template<class t,class F>
int remif(vc<t>&a,F f){
	auto itr=remove_if(all(a),f);
	int res=a.ed-itr;
	a.erase(itr,a.ed);
	return res;
}

template<class VS,class u>
void fila(VS&vs,const u&a){
	fill(all(vs),a);
}

template<class t,class u>
int findid(const vc<t>&vs,const u&a){
	auto itr=find(all(vs),a);
	if(itr==vs.ed)return -1;
	else return itr-vs.bg;
}

template<class t>
void rtt(vc<t>&vs,int i){
	rotate(vs.bg,vs.bg+i,vs.ed);
}

//Montgomery
//Ucup1-10 G (モンゴメリじゃないとTLE)
struct modinfo{
	using u128=__uint128_t;
	ull n,n2,r,t,e;
	modinfo(ull nn){
		n=nn;
        assert(n<(1ull<<62));
        assert(n%2==1);
        n2=n*2;
        r=n&3;
        rep(_,5)r*=2-n*r;
        r=-r;
        assert(r*n==-1ull);
        t=-ull(n)%n;
        e=-u128(n)%n;
	}
	ull add(ull x,ull y)const{x+=y;return x<n2?x:x-n2;}
	ull re(u128 x)const{return (x+u128(ull(x)*r)*n)>>64;}
	ull mult(ull x,ull y)const{return re(u128(x)*y);}
	ull en(ull x)const{return mult(x,e);}
	ull de(ull x)const{x=re(x);return x<n?x:x-n;}
};
template<modinfo const&ref>
struct modular{
	static constexpr ull const &mod=ref.n;
	static constexpr ull const &mod2=ref.n2;
	ull v;
	modular(ll vv=0){v=ref.en(vv%(ll)mod+mod);}
	modular operator-()const{return modular()-*this;}
	modular&operator+=(const modular&rhs){v=ref.add(v,rhs.v);return *this;}
	modular&operator-=(const modular&rhs){v=ref.add(v,mod2-rhs.v);return *this;}
	modular&operator*=(const modular&rhs){v=ref.mult(v,rhs.v);return *this;}
	modular&operator/=(const modular&rhs){return *this*=rhs.inv();}
	modular operator+(const modular&rhs)const{return modular(*this)+=rhs;}
	modular operator-(const modular&rhs)const{return modular(*this)-=rhs;}
	modular operator*(const modular&rhs)const{return modular(*this)*=rhs;}
	modular operator/(const modular&rhs)const{return modular(*this)/=rhs;}
	modular pow(ll n)const{
		modular res(1),x(*this);
		while(n){
			if(n&1)res*=x;
			x*=x;
			n>>=1;
		}
		return res;
	}
	modular inv()const{return pow(mod-2);}
	friend modular operator+(ll x,const modular&y){
		return modular(x)+y;
	}
	friend modular operator-(ll x,const modular&y){
		return modular(x)-y;
	}
	friend modular operator*(ll x,const modular&y){
		return modular(x)*y;
	}
	friend modular operator/(ll x,const modular&y){
		return modular(x)/y;
	}
	ull val()const{return ref.de(v);}
	friend ostream& operator<<(ostream&os,const modular&m){
		return os<<m.val();
	}
	friend istream& operator>>(istream&is,modular&m){
		ll x;is>>x;
		m=modular(x);
		return is;
	}
	bool operator<(const modular&r)const{return val()<r.val();}
	bool operator==(const modular&r)const{return val()==r.val();}
	bool operator!=(const modular&r)const{return val()!=r.val();}
	explicit operator bool()const{
		return val();
	}
};

template<class mint>
ll m2l(mint a){
	ull v=a.val();
	return v<mint::mod/2?v:ll(v)-ll(mint::mod);
}

//2^62 未満での最大の素数
const modinfo base(4611686018427387847ll);
//modinfo base(1);
using mint=modular<base>;

bool dbg=false;

//内部でグラフをいじるから in,out を使うときは注意
//hei[v] -> heavy edge で潜っていった時,自分含めて何個あるか
//pe[v]: v->par[v] の辺の情報
//-有向木のときは上から下の辺を入れてる
//-無向木のときは下から上の辺を入れてる
//VERIFY: yosupo
//CF530F
//CodeChef Persistent Oak
//AOJ GRL5C
template<class E>
struct HLD{
	vvc<E> g;
	int n,rt,cnt;
	vi sub,in,out,par,head,dep,hei,ni;
	vc<E> pe;
	int dfs1(int v,int p,int d){
		par[v]=p;
		dep[v]=d;
		for(auto itr=g[v].bg;itr!=g[v].ed;itr++)
			if(*itr==p){
				pe[v]=*itr;
				g[v].erase(itr);
				break;
			}
		for(auto&e:g[v]){
			pe[e]=e;
			sub[v]+=dfs1(e,v,d+1);
			if(sub[g[v][0]]<sub[e])
				swap(g[v][0],e);
		}
		return sub[v];
	}
	void dfs2(int v,int h){
		in[v]=cnt++;
		head[v]=h;
		for(int to:g[v])
			dfs2(to,to==g[v][0]?h:to);
		out[v]=cnt;
		if(si(g[v]))hei[v]=hei[g[v][0]]+1;
	}
	HLD(){}
	HLD(const vvc<E>&gg,int rr):g(gg),n(g.size()),rt(rr),cnt(0),
		sub(n,1),in(n),out(n),par(n,-1),head(n),dep(n),hei(n,1),ni(n),
		pe(n){
		dfs1(rt,-1,0);
		dfs2(rt,rt);
		rep(i,n)ni[in[i]]=i;
	}
	int lca(int a,int b){
		while(head[a]!=head[b]){
			if(dep[head[a]]>dep[head[b]])
				swap(a,b);
			b=par[head[b]];
		}
		if(dep[a]>dep[b])
			swap(a,b);
		return a;
	}
	int len(int a,int b){
		return dep[a]+dep[b]-dep[lca(a,b)]*2;
	}
	bool asde(int a,int b){
		return in[a]<=in[b]&&out[b]<=out[a];
	}
	//UCUP 1-22 F
	int adv(int a,int d){
		if(hei[a]<=d)return -1;
		else return ni[in[a]+d];
	}
	//CF692F
	int getpar(int v,int len){
		assert(dep[v]>=len);
		int tar=dep[v]-len;
		while(1){
			int h=head[v];
			if(dep[h]<=tar){
				return ni[in[h]+(tar-dep[h])];
			}
			v=par[h];
		}
		assert(false);
	}
	//1st UCUP 13 G
	int jump(int a,int b,int d){
		int c=lca(a,b);
		if(d<=(dep[a]-dep[c])){
			return getpar(a,d);
		}else{
			d=(dep[a]+dep[b]-dep[c]*2)-d;
			assert(d>=0);
			return getpar(b,d);
		}
	}
	//XX Opencup GP of Korea
	//CF625 F
	//2020 Multi-Uni Contest Day5 G
	//CF415E
	//Universal Cup 2023 Stage 1 G
	vi index;
	//vs を含む virtual tree を返す
	//返すのは virtual tree に使われた頂点と,辺の集合
	//辺の端点は,virtual tree における番号
	//元の木における番号を virtual tree の頂点番号に写すのが,index という変数
	//辺は ch->par の順
	//virtual tree は行き掛け順で番号がついている
	//特に,頂点 0 が根になるようにできている
	//pair<vi,vc<pi>> tree_compress(vi vs){
	void tree_compress(vi&vs,vc<pi>&es){
		if(si(index)==0)index.resize(n);
		assert(index.size());
		auto comp = [&](int x,int y){
			return in[x] < in[y];
		};
		sort(all(vs),comp);
		assert(is_sorted(all(vs),comp));
		vs.erase(unique(all(vs)),vs.ed);
		int k = vs.size();
		rep(i,k-1){
			vs.pb(lca(vs[i],vs[i+1]));
		}
		sort(all(vs),comp);
		vs.erase(unique(all(vs)),vs.ed);
		k = vs.size();
		rep(i,k) index[vs[i]] = i;
		es.clear();
		rng(i,1,k){
			int p = lca(vs[i-1],vs[i]);
			es.eb(i,index[p]);
		}
		//return mp(vs,es);
	}
	//assume a is desdendant of b
	//ex=true <=> exclude b
	template<class F>
	void subpath_work(int a,int b,bool ex,F f){
		while(1){
			if(head[a]==head[b]){
				f(in[b]+ex,in[a]+1);
				break;
			}else{
				int h=head[a];
				f(in[h],in[a]+1);
				a=par[h];
			}
		}
	}
	//KUPC2021E
	//パスに対する操作順に注意
	//euler-tour 順にしたときの区間に作用していることに注意
	//ex=true exclude lca(a,b) (=apply path edges)
	template<class F>
	void path_work(int a,int b,bool ex,F f){
		int c=lca(a,b);
		subpath_work(a,c,ex,f);
		subpath_work(b,c,true,f);
	}
	//v->false
	//-1->true
	//root-v パス上で f(x)=true となる最も深い頂点を返す
	//CF857G
	template<class F>
	int find_lowest(int v,F f)const{
		while(v>=0){
			int h=head[v];
			if(!f(h)){
				v=par[h];
			}else{
				int l=0,r=dep[v]-dep[h]+1;
				while(r-l>1){
					const int mid=(l+r)/2;
					if(f(ni[in[h]+mid]))l=mid;
					else r=mid;
				}
				return ni[in[h]+l];
			}
		}
		return -1;
	}
	//-1->false
	//v->true
	//root-v パス上で f(x)=true となる最も浅い頂点を返す
	//Yandex Cup 2023 Semifinal F (TLE...)
	template<class F>
	int find_highest(int v,F f)const{
		while(1){
			int h=head[v];
			int p=par[h];
			if(p!=-1&&f(p)){
				v=p;
			}else{
				int l=-1,r=dep[v]-dep[h];
				while(r-l>1){
					const int mid=(l+r)/2;
					if(f(ni[in[h]+mid]))r=mid;
					else l=mid;
				}
				return ni[in[h]+r];
			}
		}
		assert(false);
	}
};

//N() が単位元
//VERIFY: yosupo
//CF407E
template<class N>
struct segtree{
	vc<N> x;
	int n,s;
	segtree(){}
	template<class t>
	segtree(const vc<t>&a){
		n=a.size();
		s=1;
		while(s<n){s*=2;}
		x.resize(s*2);
		rep(i,n)
			x[s+i]=N(a[i]);
		gnr(i,1,s)
			x[i]=N::merge(x[i*2],x[i*2+1]);
	}
	//NOT Verified
	segtree(int nn){
		resize(nn);
	}
	void resize(int nn){
		n=nn;
		s=1;
		while(s<n){s*=2;}
		x.assign(s*2,N());
		gnr(i,1,s)
			x[i]=N::merge(x[i*2],x[i*2+1]);
	}
	template<class t>
	void load(const vc<t>&a){
		n=a.size();
		s=1;
		while(s<n){s*=2;}
		x.resize(s*2);
		rep(i,n)
			x[s+i]=N(a[i]);
		rng(i,n,s)
			x[s+i]=N();
		gnr(i,1,s)
			x[i]=N::merge(x[i*2],x[i*2+1]);
	}
	void clear(){
		rep(i,n)
			x[s+i]=N();
		gnr(i,1,s)
			x[i]=N::merge(x[i*2],x[i*2+1]);
	}
	N point_get(int i){
		assert(inc(0,i,n-1));
		return x[i+s];
	}
	void point_set(int i,const N&t){
		assert(inc(0,i,n-1));
		i+=s;
		x[i]=t;
		while(i>>=1)x[i]=N::merge(x[i*2],x[i*2+1]);
	}
	void point_merge(int i,const N&t){
		assert(inc(0,i,n-1));
		i+=s;
		x[i]=N::merge(x[i],t);
		while(i>>=1)x[i]=N::merge(x[i*2],x[i*2+1]);
	}
	template<class F,class...Args>
	void point_change(int i,F f,Args&&...args){
		assert(inc(0,i,n-1));
		i+=s;
		(x[i].*f)(forward<Args>(args)...);
		while(i>>=1)x[i]=N::merge(x[i*2],x[i*2+1]);
	}
	N composite(int b,int e){
		assert(0<=b&&b<=e&&e<=n);
		N lf,rt;
		for(int l=b+s,r=e+s;l<r;l>>=1,r>>=1){
			if (l&1){
				lf=N::merge(lf,x[l]);
				l++;
			}
			if (r&1){
				r--;
				rt=N::merge(x[r],rt);
			}
		}
		return N::merge(lf,rt);
	}
	N getall(){
		return x[1];
	}
	//UTPC2020E
	//n 超えるかもしれない
	template <class F,class... Args> 
	pair<int,N> max_right(int l,F f,Args&&... args){
		assert((N().*f)(forward<Args>(args)...));
		assert(0<=l&&l<=n);
		if(l==n)return mp(n,N());
		l+=s;
		
		N sm;
		assert((sm.*f)(forward<Args>(args)...));
		do {
			while (l % 2 == 0) l >>= 1;
			if (!(N::merge(sm,x[l]).*f)(forward<Args>(args)...)){
				while (l < s) {
					l = (2 * l);
					N tmp=N::merge(sm,x[l]);
					if ((tmp.*f)(forward<Args>(args)...)) {
						sm = tmp;
						l++;
					}
				}
				return mp(l - s,sm);
			}
			sm = N::merge(sm, x[l]);
			l++;
		} while ((l & -l) != l);
		return mp(n,sm);
	}
	//UTPC2020E
	template <class F,class... Args> 
	pair<int,N> min_left(int r,F f,Args&&... args){
		assert((N().*f)(forward<Args>(args)...));
		assert(0<=r&&r<=n);
        if(r==0)return mp(0,N());
        r+=s;
        N sm;
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!(N::merge(x[r],sm).*f)(forward<Args>(args)...)) {
                while (r < s) {
                    r = (2 * r + 1);
                    N tmp=N::merge(x[r],sm);
                    if ((tmp.*f)(forward<Args>(args)...)) {
                        sm = tmp;
                        r--;
                    }
                }
                return mp(r + 1 - s,sm);
            }
            sm = N::merge(x[r], sm);
        } while ((r & -r) != r);
        return mp(0,sm);
    }
    //行列とか乗せて必要なのはベクトルとの積,みたいなときに使える?
    //CF Goodbye 2016 E
    //CF 896 F
	template<class F,class T,class... Args>
	T accumulate(int l,int r,F f,T t,Args&&... args) {
		assert(0<=l&&l<=r&&r<=n);
		static int buf[2][30];
		int cnt[2]{};
		for(l+=s,r+=s;l<r;l>>=1,r>>=1){
			if(l&1)buf[0][cnt[0]++]=l;
			if(r&1)buf[1][cnt[1]++]=r-1;
			l++;
		}
		rep(i,cnt[0])t=(x[buf[0][i]].*f)(t,forward<Args>(args)...);
		per(i,cnt[1])t=(x[buf[1][i]].*f)(t,forward<Args>(args)...);
		return t;
	}
};

//max版
struct PreMax{
	int len,sum,pos,val;
	PreMax():len(0),sum(0),pos(0),val(0){}
	PreMax(int v):len(1),sum(v){
		single();
	}
	void single(){
		if(sum>0){
			pos=1;
			val=sum;
		}else{
			pos=0;
			val=0;
		}
	}
	static PreMax merge(const PreMax&a,const PreMax&b){
		PreMax res;
		res.len=a.len+b.len;
		res.sum=a.sum+b.sum;
		if(a.val>=a.sum+b.val){
			res.pos=a.pos;
			res.val=a.val;
		}else{
			res.pos=a.len+b.pos;
			res.val=a.sum+b.val;
		}
		return res;
	}
	void add(int v){
		assert(len==1);
		sum+=v;
		single();
	}
};

const mint W=3277392570379474389;

struct Z{
	int n;
	segtree<PreMax> seg;
	//vc<set<mint>> buf;
	//map<mint,int> pos;
	vc<unordered_set<ull>> buf;
	unordered_map<ull,int> pos;
	void init(int nn){
		n=nn;
		seg=segtree<PreMax>(vi(n,-1));
		buf.resize(n);
	}
	void modifyseg(int i){
		seg.point_set(i,si(buf[i])-1);
	}
	void upd(ull v,int s){
		auto itr=pos.find(v);
		if(itr!=pos.ed){
			if(itr->b<=s)return;
			buf[itr->b].erase(v);
			modifyseg(itr->b);
			pos.erase(itr);
		}
		pos[v]=s;
		buf[s].insert(v);
		modifyseg(s);
	}
	void collect(int l,int r,mint c,vc<mint>&ls){
		rng(i,l,r)for(auto v:buf[i])ls.pb(c+W*v);
	}
	void moveto(Z&z){
		for(auto [v,i]:pos)z.upd(v,i);
	}
	bool isok(){
		return seg.getall().val<=0;
	}
};

struct E{
	int to,col;
	operator int()const{
		return to;
	}
};

std::vector<int> beechtree(int n,int,std::vector<int> P,std::vector<int> C){
	vi ans(n,1);
	vvc<E> t(n);
	rng(i,1,n){
		t[P[i]].pb({i,C[i]});
	}
	HLD<E> hld(t,0);
	vc<Z> z(n);
	rep(i,n)if(hld.head[i]==i)z[i].init(hld.sub[i]);
	per(i,n){
		{
			vi tmp;
			for(auto [j,c]:t[i]){
				ans[i]&=ans[j];
				tmp.pb(c);
			}
			ans[i]&=isuni(tmp);
		}
		if(ans[i]){
			int h=hld.head[i];
			if(t[i].empty()){
				z[h].upd(0,0);
			}else{
				{
					vc<mint> ls;
					for(auto [j,c]:t[i]){
						int ign=0;
						for(auto [k,d]:t[j])if(c==d)ign=hld.sub[k];
						z[hld.head[j]].collect(ign,hld.sub[j],c,ls);
					}
					for(auto v:ls)
						z[h].upd(v.v,hld.sub[i]-1);
				}
				for(auto [j,c]:t[i])if(hld.head[j]==j){
					z[j].moveto(z[h]);
					z[j]=Z();
				}
			}
			ans[i]=z[h].isok();
		}
	}
	
    return ans;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 344 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 344 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 1 ms 344 KB Output is correct
19 Correct 1 ms 348 KB Output is correct
20 Correct 1 ms 344 KB Output is correct
21 Correct 1 ms 344 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 0 ms 348 KB Output is correct
24 Correct 0 ms 600 KB Output is correct
25 Correct 0 ms 348 KB Output is correct
26 Correct 0 ms 348 KB Output is correct
27 Correct 1 ms 348 KB Output is correct
28 Correct 0 ms 344 KB Output is correct
29 Correct 0 ms 348 KB Output is correct
30 Correct 0 ms 348 KB Output is correct
31 Correct 0 ms 348 KB Output is correct
32 Correct 0 ms 348 KB Output is correct
33 Correct 1 ms 348 KB Output is correct
34 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 109 ms 86596 KB Output is correct
8 Correct 108 ms 86700 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 2 ms 1628 KB Output is correct
14 Correct 3 ms 1628 KB Output is correct
15 Correct 2 ms 1116 KB Output is correct
16 Correct 1 ms 1116 KB Output is correct
17 Correct 317 ms 123944 KB Output is correct
18 Correct 326 ms 122736 KB Output is correct
19 Correct 152 ms 95992 KB Output is correct
20 Correct 110 ms 86600 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 2 ms 1372 KB Output is correct
12 Correct 2 ms 1116 KB Output is correct
13 Correct 2 ms 1300 KB Output is correct
14 Correct 2 ms 1116 KB Output is correct
15 Correct 197 ms 86124 KB Output is correct
16 Correct 196 ms 81216 KB Output is correct
17 Correct 190 ms 82128 KB Output is correct
18 Correct 194 ms 84668 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 109 ms 86596 KB Output is correct
6 Correct 108 ms 86700 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 3 ms 1372 KB Output is correct
10 Correct 2 ms 1464 KB Output is correct
11 Correct 244 ms 115268 KB Output is correct
12 Correct 240 ms 110212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 344 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 344 KB Output is correct
20 Correct 0 ms 348 KB Output is correct
21 Correct 1 ms 344 KB Output is correct
22 Correct 1 ms 348 KB Output is correct
23 Correct 1 ms 344 KB Output is correct
24 Correct 1 ms 344 KB Output is correct
25 Correct 0 ms 348 KB Output is correct
26 Correct 0 ms 348 KB Output is correct
27 Correct 0 ms 600 KB Output is correct
28 Correct 0 ms 348 KB Output is correct
29 Correct 0 ms 348 KB Output is correct
30 Correct 1 ms 348 KB Output is correct
31 Correct 0 ms 344 KB Output is correct
32 Correct 0 ms 348 KB Output is correct
33 Correct 0 ms 348 KB Output is correct
34 Correct 0 ms 348 KB Output is correct
35 Correct 0 ms 348 KB Output is correct
36 Correct 1 ms 348 KB Output is correct
37 Correct 0 ms 348 KB Output is correct
38 Correct 1 ms 348 KB Output is correct
39 Correct 0 ms 348 KB Output is correct
40 Correct 0 ms 348 KB Output is correct
41 Correct 0 ms 348 KB Output is correct
42 Correct 1 ms 344 KB Output is correct
43 Correct 1 ms 348 KB Output is correct
44 Correct 1 ms 348 KB Output is correct
45 Correct 1 ms 348 KB Output is correct
46 Correct 1 ms 348 KB Output is correct
47 Correct 1 ms 348 KB Output is correct
48 Correct 1 ms 348 KB Output is correct
49 Correct 1 ms 348 KB Output is correct
50 Correct 0 ms 348 KB Output is correct
51 Correct 1 ms 348 KB Output is correct
52 Correct 1 ms 348 KB Output is correct
53 Correct 1 ms 348 KB Output is correct
54 Correct 1 ms 344 KB Output is correct
55 Correct 1 ms 344 KB Output is correct
56 Correct 1 ms 348 KB Output is correct
57 Correct 1 ms 348 KB Output is correct
58 Correct 1 ms 348 KB Output is correct
59 Correct 1 ms 348 KB Output is correct
60 Correct 1 ms 348 KB Output is correct
61 Correct 1 ms 348 KB Output is correct
62 Correct 1 ms 348 KB Output is correct
63 Correct 1 ms 348 KB Output is correct
64 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 344 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 344 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 1 ms 344 KB Output is correct
15 Correct 1 ms 348 KB Output is correct
16 Correct 1 ms 344 KB Output is correct
17 Correct 1 ms 344 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 0 ms 600 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 1 ms 348 KB Output is correct
24 Correct 0 ms 344 KB Output is correct
25 Correct 2 ms 1628 KB Output is correct
26 Correct 2 ms 1628 KB Output is correct
27 Correct 3 ms 1624 KB Output is correct
28 Correct 2 ms 1112 KB Output is correct
29 Correct 3 ms 1628 KB Output is correct
30 Correct 3 ms 1624 KB Output is correct
31 Correct 5 ms 1884 KB Output is correct
32 Correct 4 ms 1628 KB Output is correct
33 Correct 3 ms 1628 KB Output is correct
34 Correct 5 ms 2140 KB Output is correct
35 Correct 4 ms 1884 KB Output is correct
36 Correct 3 ms 1628 KB Output is correct
37 Correct 3 ms 1628 KB Output is correct
38 Correct 2 ms 1628 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 344 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 344 KB Output is correct
20 Correct 0 ms 348 KB Output is correct
21 Correct 1 ms 344 KB Output is correct
22 Correct 1 ms 348 KB Output is correct
23 Correct 1 ms 344 KB Output is correct
24 Correct 1 ms 344 KB Output is correct
25 Correct 0 ms 348 KB Output is correct
26 Correct 0 ms 348 KB Output is correct
27 Correct 0 ms 600 KB Output is correct
28 Correct 0 ms 348 KB Output is correct
29 Correct 0 ms 348 KB Output is correct
30 Correct 1 ms 348 KB Output is correct
31 Correct 0 ms 344 KB Output is correct
32 Correct 0 ms 348 KB Output is correct
33 Correct 0 ms 348 KB Output is correct
34 Correct 0 ms 348 KB Output is correct
35 Correct 0 ms 348 KB Output is correct
36 Correct 1 ms 348 KB Output is correct
37 Correct 0 ms 348 KB Output is correct
38 Correct 1 ms 348 KB Output is correct
39 Correct 0 ms 348 KB Output is correct
40 Correct 0 ms 348 KB Output is correct
41 Correct 0 ms 348 KB Output is correct
42 Correct 2 ms 1628 KB Output is correct
43 Correct 3 ms 1628 KB Output is correct
44 Correct 2 ms 1116 KB Output is correct
45 Correct 1 ms 1116 KB Output is correct
46 Correct 1 ms 344 KB Output is correct
47 Correct 1 ms 348 KB Output is correct
48 Correct 1 ms 348 KB Output is correct
49 Correct 1 ms 348 KB Output is correct
50 Correct 1 ms 348 KB Output is correct
51 Correct 1 ms 348 KB Output is correct
52 Correct 1 ms 348 KB Output is correct
53 Correct 1 ms 348 KB Output is correct
54 Correct 0 ms 348 KB Output is correct
55 Correct 1 ms 348 KB Output is correct
56 Correct 2 ms 1372 KB Output is correct
57 Correct 2 ms 1116 KB Output is correct
58 Correct 2 ms 1300 KB Output is correct
59 Correct 2 ms 1116 KB Output is correct
60 Correct 1 ms 348 KB Output is correct
61 Correct 1 ms 348 KB Output is correct
62 Correct 3 ms 1372 KB Output is correct
63 Correct 2 ms 1464 KB Output is correct
64 Correct 1 ms 344 KB Output is correct
65 Correct 1 ms 344 KB Output is correct
66 Correct 1 ms 348 KB Output is correct
67 Correct 1 ms 348 KB Output is correct
68 Correct 1 ms 348 KB Output is correct
69 Correct 1 ms 348 KB Output is correct
70 Correct 1 ms 348 KB Output is correct
71 Correct 1 ms 348 KB Output is correct
72 Correct 1 ms 348 KB Output is correct
73 Correct 1 ms 348 KB Output is correct
74 Correct 1 ms 348 KB Output is correct
75 Correct 2 ms 1628 KB Output is correct
76 Correct 2 ms 1628 KB Output is correct
77 Correct 3 ms 1624 KB Output is correct
78 Correct 2 ms 1112 KB Output is correct
79 Correct 3 ms 1628 KB Output is correct
80 Correct 3 ms 1624 KB Output is correct
81 Correct 5 ms 1884 KB Output is correct
82 Correct 4 ms 1628 KB Output is correct
83 Correct 3 ms 1628 KB Output is correct
84 Correct 5 ms 2140 KB Output is correct
85 Correct 4 ms 1884 KB Output is correct
86 Correct 3 ms 1628 KB Output is correct
87 Correct 3 ms 1628 KB Output is correct
88 Correct 2 ms 1628 KB Output is correct
89 Correct 3 ms 1628 KB Output is correct
90 Correct 3 ms 1628 KB Output is correct
91 Correct 6 ms 2136 KB Output is correct
92 Correct 4 ms 1628 KB Output is correct
93 Correct 3 ms 1628 KB Output is correct
94 Correct 5 ms 2136 KB Output is correct
95 Correct 4 ms 1628 KB Output is correct
96 Correct 3 ms 1628 KB Output is correct
97 Correct 3 ms 1628 KB Output is correct
98 Correct 3 ms 1628 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 344 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 344 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 1 ms 344 KB Output is correct
15 Correct 1 ms 348 KB Output is correct
16 Correct 1 ms 344 KB Output is correct
17 Correct 1 ms 344 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 0 ms 600 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 1 ms 348 KB Output is correct
24 Correct 0 ms 344 KB Output is correct
25 Correct 2 ms 1628 KB Output is correct
26 Correct 2 ms 1628 KB Output is correct
27 Correct 3 ms 1624 KB Output is correct
28 Correct 2 ms 1112 KB Output is correct
29 Correct 3 ms 1628 KB Output is correct
30 Correct 3 ms 1624 KB Output is correct
31 Correct 5 ms 1884 KB Output is correct
32 Correct 4 ms 1628 KB Output is correct
33 Correct 3 ms 1628 KB Output is correct
34 Correct 5 ms 2140 KB Output is correct
35 Correct 4 ms 1884 KB Output is correct
36 Correct 3 ms 1628 KB Output is correct
37 Correct 3 ms 1628 KB Output is correct
38 Correct 2 ms 1628 KB Output is correct
39 Correct 327 ms 123828 KB Output is correct
40 Correct 308 ms 119804 KB Output is correct
41 Correct 274 ms 113556 KB Output is correct
42 Correct 108 ms 86592 KB Output is correct
43 Correct 350 ms 130204 KB Output is correct
44 Correct 257 ms 128624 KB Output is correct
45 Correct 1821 ms 220348 KB Output is correct
46 Correct 581 ms 180288 KB Output is correct
47 Correct 445 ms 154920 KB Output is correct
48 Correct 327 ms 131528 KB Output is correct
49 Correct 262 ms 116896 KB Output is correct
50 Correct 1680 ms 239140 KB Output is correct
51 Correct 722 ms 202048 KB Output is correct
52 Correct 505 ms 166720 KB Output is correct
53 Correct 345 ms 137592 KB Output is correct
54 Correct 266 ms 112504 KB Output is correct
55 Correct 199 ms 110404 KB Output is correct
56 Correct 210 ms 110100 KB Output is correct
57 Correct 202 ms 126468 KB Output is correct
58 Correct 207 ms 124224 KB Output is correct
59 Correct 191 ms 124256 KB Output is correct
60 Correct 200 ms 123964 KB Output is correct
61 Correct 210 ms 125524 KB Output is correct
62 Correct 214 ms 124664 KB Output is correct
63 Correct 494 ms 126420 KB Output is correct
64 Correct 251 ms 128476 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 344 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 344 KB Output is correct
20 Correct 0 ms 348 KB Output is correct
21 Correct 1 ms 344 KB Output is correct
22 Correct 1 ms 348 KB Output is correct
23 Correct 1 ms 344 KB Output is correct
24 Correct 1 ms 344 KB Output is correct
25 Correct 0 ms 348 KB Output is correct
26 Correct 0 ms 348 KB Output is correct
27 Correct 0 ms 600 KB Output is correct
28 Correct 0 ms 348 KB Output is correct
29 Correct 0 ms 348 KB Output is correct
30 Correct 1 ms 348 KB Output is correct
31 Correct 0 ms 344 KB Output is correct
32 Correct 0 ms 348 KB Output is correct
33 Correct 0 ms 348 KB Output is correct
34 Correct 0 ms 348 KB Output is correct
35 Correct 0 ms 348 KB Output is correct
36 Correct 1 ms 348 KB Output is correct
37 Correct 0 ms 348 KB Output is correct
38 Correct 109 ms 86596 KB Output is correct
39 Correct 108 ms 86700 KB Output is correct
40 Correct 1 ms 348 KB Output is correct
41 Correct 0 ms 348 KB Output is correct
42 Correct 0 ms 348 KB Output is correct
43 Correct 0 ms 348 KB Output is correct
44 Correct 2 ms 1628 KB Output is correct
45 Correct 3 ms 1628 KB Output is correct
46 Correct 2 ms 1116 KB Output is correct
47 Correct 1 ms 1116 KB Output is correct
48 Correct 317 ms 123944 KB Output is correct
49 Correct 326 ms 122736 KB Output is correct
50 Correct 152 ms 95992 KB Output is correct
51 Correct 110 ms 86600 KB Output is correct
52 Correct 1 ms 344 KB Output is correct
53 Correct 1 ms 348 KB Output is correct
54 Correct 1 ms 348 KB Output is correct
55 Correct 1 ms 348 KB Output is correct
56 Correct 1 ms 348 KB Output is correct
57 Correct 1 ms 348 KB Output is correct
58 Correct 1 ms 348 KB Output is correct
59 Correct 1 ms 348 KB Output is correct
60 Correct 0 ms 348 KB Output is correct
61 Correct 1 ms 348 KB Output is correct
62 Correct 2 ms 1372 KB Output is correct
63 Correct 2 ms 1116 KB Output is correct
64 Correct 2 ms 1300 KB Output is correct
65 Correct 2 ms 1116 KB Output is correct
66 Correct 197 ms 86124 KB Output is correct
67 Correct 196 ms 81216 KB Output is correct
68 Correct 190 ms 82128 KB Output is correct
69 Correct 194 ms 84668 KB Output is correct
70 Correct 1 ms 348 KB Output is correct
71 Correct 1 ms 348 KB Output is correct
72 Correct 3 ms 1372 KB Output is correct
73 Correct 2 ms 1464 KB Output is correct
74 Correct 244 ms 115268 KB Output is correct
75 Correct 240 ms 110212 KB Output is correct
76 Correct 1 ms 344 KB Output is correct
77 Correct 1 ms 344 KB Output is correct
78 Correct 1 ms 348 KB Output is correct
79 Correct 1 ms 348 KB Output is correct
80 Correct 1 ms 348 KB Output is correct
81 Correct 1 ms 348 KB Output is correct
82 Correct 1 ms 348 KB Output is correct
83 Correct 1 ms 348 KB Output is correct
84 Correct 1 ms 348 KB Output is correct
85 Correct 1 ms 348 KB Output is correct
86 Correct 1 ms 348 KB Output is correct
87 Correct 2 ms 1628 KB Output is correct
88 Correct 2 ms 1628 KB Output is correct
89 Correct 3 ms 1624 KB Output is correct
90 Correct 2 ms 1112 KB Output is correct
91 Correct 3 ms 1628 KB Output is correct
92 Correct 3 ms 1624 KB Output is correct
93 Correct 5 ms 1884 KB Output is correct
94 Correct 4 ms 1628 KB Output is correct
95 Correct 3 ms 1628 KB Output is correct
96 Correct 5 ms 2140 KB Output is correct
97 Correct 4 ms 1884 KB Output is correct
98 Correct 3 ms 1628 KB Output is correct
99 Correct 3 ms 1628 KB Output is correct
100 Correct 2 ms 1628 KB Output is correct
101 Correct 3 ms 1628 KB Output is correct
102 Correct 3 ms 1628 KB Output is correct
103 Correct 6 ms 2136 KB Output is correct
104 Correct 4 ms 1628 KB Output is correct
105 Correct 3 ms 1628 KB Output is correct
106 Correct 5 ms 2136 KB Output is correct
107 Correct 4 ms 1628 KB Output is correct
108 Correct 3 ms 1628 KB Output is correct
109 Correct 3 ms 1628 KB Output is correct
110 Correct 3 ms 1628 KB Output is correct
111 Correct 327 ms 123828 KB Output is correct
112 Correct 308 ms 119804 KB Output is correct
113 Correct 274 ms 113556 KB Output is correct
114 Correct 108 ms 86592 KB Output is correct
115 Correct 350 ms 130204 KB Output is correct
116 Correct 257 ms 128624 KB Output is correct
117 Correct 1821 ms 220348 KB Output is correct
118 Correct 581 ms 180288 KB Output is correct
119 Correct 445 ms 154920 KB Output is correct
120 Correct 327 ms 131528 KB Output is correct
121 Correct 262 ms 116896 KB Output is correct
122 Correct 1680 ms 239140 KB Output is correct
123 Correct 722 ms 202048 KB Output is correct
124 Correct 505 ms 166720 KB Output is correct
125 Correct 345 ms 137592 KB Output is correct
126 Correct 266 ms 112504 KB Output is correct
127 Correct 199 ms 110404 KB Output is correct
128 Correct 210 ms 110100 KB Output is correct
129 Correct 202 ms 126468 KB Output is correct
130 Correct 207 ms 124224 KB Output is correct
131 Correct 191 ms 124256 KB Output is correct
132 Correct 200 ms 123964 KB Output is correct
133 Correct 210 ms 125524 KB Output is correct
134 Correct 214 ms 124664 KB Output is correct
135 Correct 494 ms 126420 KB Output is correct
136 Correct 251 ms 128476 KB Output is correct
137 Correct 478 ms 144156 KB Output is correct
138 Correct 333 ms 133948 KB Output is correct
139 Correct 1651 ms 191564 KB Output is correct
140 Correct 564 ms 162628 KB Output is correct
141 Correct 403 ms 140488 KB Output is correct
142 Correct 325 ms 127456 KB Output is correct
143 Correct 276 ms 120872 KB Output is correct
144 Correct 1152 ms 222600 KB Output is correct
145 Correct 631 ms 189924 KB Output is correct
146 Correct 482 ms 161376 KB Output is correct
147 Correct 370 ms 138312 KB Output is correct
148 Correct 277 ms 114012 KB Output is correct
149 Correct 210 ms 112196 KB Output is correct
150 Correct 232 ms 112228 KB Output is correct
151 Correct 214 ms 127592 KB Output is correct
152 Correct 215 ms 124744 KB Output is correct
153 Correct 204 ms 124996 KB Output is correct
154 Correct 201 ms 124952 KB Output is correct
155 Correct 232 ms 126376 KB Output is correct
156 Correct 219 ms 125336 KB Output is correct
157 Correct 528 ms 127396 KB Output is correct
158 Correct 255 ms 129256 KB Output is correct