답안 #914138

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
914138 2024-01-21T09:22:07 Z Alcabel 절취선 (JOI14_ho_t5) C++17
100 / 100
515 ms 36548 KB
#include <bits/stdc++.h>
using namespace std;

struct DSU {
    int n;
    vector<int> par, sz, mask;
    DSU() {}
    DSU(int _n) {
        n = _n;
        par.resize(n);
        sz.resize(n);
        mask.resize(n);
        for (int i = 0; i < n; ++i) {
            par[i] = i, sz[i] = 1;
        }
    }
    int getParent(int v) {
        if (par[v] != v) {
            par[v] = getParent(par[v]);
        }
        return par[v];
    }
    void uniteSets(int v, int u) {
        // cerr << "v: " << v << ", u: " << u << '\n';
        v = getParent(v), u = getParent(u);
        if (v == u) { return; }
        if (sz[v] < sz[u]) { swap(v, u); }
        par[u] = v;
        sz[v] += sz[u];
        mask[v] |= mask[u];
    }
    int getComps() {
        int comps = 0;
        for (int i = 0; i < n; ++i) {
            if (getParent(i) == i && mask[i] == 3) {
                ++comps;
            }
        }
        return comps;
    }
    ~DSU() {}
};

struct SegTree {
    int n, N;
    DSU dsu;
    vector<int> lazy, sum;
    vector<set<int>> leafs;
    SegTree() {}
    SegTree(int _n, int dsusz) {
        n = _n, N = 1;
        while (N < n) {
            N <<= 1;
        }
        dsu = DSU(dsusz);
        lazy.resize(2 * N, -1);
        sum.resize(2 * N);
        leafs.resize(N);
    }
    void push(int v) {
        if (v < N) {
            if (lazy[2 * v] != -1 && sum[2 * v] > 0) {
                // cerr << "pushL\n";
                // cerr << v << '\n';
                dsu.uniteSets(lazy[2 * v], lazy[v]);
            }
            if (lazy[2 * v + 1] != -1 && sum[2 * v + 1] > 0) {
                // cerr << "pushR\n";
                // cerr << v << '\n';
                dsu.uniteSets(lazy[2 * v + 1], lazy[v]);
            }
            lazy[2 * v] = lazy[v];
            lazy[2 * v + 1] = lazy[v];
        } else {
            if (!leafs[v - N].empty()) {
                // cerr << "pushLeaf\n";
                dsu.uniteSets(lazy[v], *leafs[v - N].begin());
            }
        }
        lazy[v] = -1;
    }
    void unite(int v, int tl, int tr, int l, int r, int i) {
        if (lazy[v] != -1) {
            push(v);
        }
        if (tl >= r || tr <= l) {
            return;
        }
        if (l <= tl && tr <= r) {
            lazy[v] = i;
            push(v);
            return;
        }
        int m = tl + (tr - tl) / 2;
        unite(2 * v, tl, m, l, r, i);
        unite(2 * v + 1, m, tr, l, r, i);
    }
    void unite(int l, int r, int i) {
        unite(1, 0, N, l, r, i);
    }
    void change(int v, int tl, int tr, int pos, int i, int flag) {
        if (lazy[v] != -1) {
            push(v);
        }
        if (tl >= pos + 1 || tr <= pos) {
            return;
        }
        if (tl + 1 == tr) {
            if (flag > 0) {
                // insert
                if (!leafs[v - N].empty()) {
                    // cerr << "when change\n";
                    dsu.uniteSets(*leafs[v - N].begin(), i);
                }
                leafs[v - N].emplace(i);
            } else {
                // erase
                leafs[v - N].erase(i);
            }
            sum[v] = !leafs[v - N].empty();
            return;
        }
        int m = tl + (tr - tl) / 2;
        change(2 * v, tl, m, pos, i, flag);
        change(2 * v + 1, m, tr, pos, i, flag);
        sum[v] = sum[2 * v] + sum[2 * v + 1];
    }
    void change(int pos, int i, int flag) {
        change(1, 0, N, pos, i, flag);
    }
    int getSum(int l, int r) {
        if (l > r) { return 0; }
        int vl = N + l, vr = N + r, res = 0;
        while (vl < vr) {
            if (vl & 1) {
                res += sum[vl];
            }
            if ((vr ^ 1) & 1) {
                res += sum[vr];
            }
            vl = (vl + 1) >> 1;
            vr = (vr - 1) >> 1;
        }
        if (vl == vr) {
            res += sum[vl];
        }
        return res;
    }
    ~SegTree() {}
};

struct Event {
    int lx, rx, y, type, i;
    Event() {}
    Event(int _lx, int _rx, int _y, int _type, int _i) {
        lx = _lx, rx = _rx, y = _y, type = _type, i = _i;
    }
    bool operator<(const Event& other) const {
        return make_pair(y, type) < make_pair(other.y, other.type);
    }
    ~Event() {}
};

void solve() {
    int w, h, n;
    cin >> w >> h >> n;
    vector<vector<int>> cuts(n + 4, vector<int>(4));
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < 4; ++j) {
            cin >> cuts[i][j];
        }
    }
    cuts[n] = {0, 0, 0, h};
    cuts[n + 1] = {0, h, w, h};
    cuts[n + 2] = {w, 0, w, h};
    cuts[n + 3] = {0, 0, w, 0};
    n += 4;
    for (int i = 0; i < n; ++i) {
        if (cuts[i][0] == cuts[i][2] && cuts[i][1] == cuts[i][3]) {
            swap(cuts[i], cuts.back());
            cuts.pop_back();
            --i;
            --n;
        }
    }
    vector<Event> evs;
    vector<int> allX;
    auto getX = [&](int x) {
        return lower_bound(allX.begin(), allX.end(), x) - allX.begin();
    };
    auto calc = [&]() -> vector<long long> {
        SegTree st(allX.size(), n);
        for (int i = 0; i < n; ++i) {
            if (cuts[i][0] == cuts[i][2]) {
                st.dsu.mask[i] = 1;
            } else {
                st.dsu.mask[i] = 2;
            }
        }
        set<pair<int, int>> segs;
        vector<long long> res = {0, 0, 0};
        for (int l = 0; l < (int)evs.size(); ++l) {
            if (evs[l].type == 0) {
                segs.clear();
                int r = l - 1;
                while (r + 1 < (int)evs.size() && evs[r + 1].type == 0 && evs[r + 1].y == evs[l].y) {
                    ++r;
                    st.unite(getX(evs[r].lx), getX(evs[r].rx) + 1, evs[r].i);
                    int newL = evs[r].lx, newR = evs[r].rx;
                    auto it = segs.lower_bound(make_pair(evs[r].lx, 0));
                    while (it != segs.end() && it->second <= evs[r].rx) {
                        newL = min(newL, it->second);
                        newR = max(newR, it->first);
                        it = segs.erase(it);
                    }
                    segs.emplace(newR, newL);
                }
                while (!segs.empty()) {
                    auto [rx, lx] = *segs.begin();
                    segs.erase(segs.begin());
                    int ptrL = getX(lx), ptrR = getX(rx), points;
                    points = st.getSum(ptrL, ptrR);
                    // cerr << "y: " << evs[r].y << ", lx: " << lx << ", rx: " << rx << ", points: " << points << '\n';
                    res[0] += points, res[1] += max(0, points - 1);
                }
                l = r;
            } else {
                // cerr << "y: " << evs[l].y << ", x: " << evs[l].lx << ", type: " << evs[l].type << '\n';
                st.change(getX(evs[l].lx), evs[l].i, -evs[l].type);
            }
        }
        res[2] = st.dsu.getComps();
        cerr << "res: " << res[0] << ' ' << res[1] << ' ' << res[2] << '\n';
        return res;
    };
    vector<long long> res = {-1, 0, -1};
    for (int iter = 0; iter < 2; ++iter) {
        allX.clear();
        evs.clear();
        for (int i = 0; i < n; ++i) {
            if (cuts[i][0] == cuts[i][2]) {
                // vertical
                evs.emplace_back(cuts[i][0], cuts[i][0], cuts[i][1], -1, i);
                evs.emplace_back(cuts[i][0], cuts[i][0], cuts[i][3], 1, i);
                allX.emplace_back(cuts[i][0]);
            } else {
                // horizontal
                evs.emplace_back(cuts[i][0], cuts[i][2], cuts[i][1], 0, i);
                allX.emplace_back(cuts[i][0]);
                allX.emplace_back(cuts[i][2]);
            }
        }
        sort(allX.begin(), allX.end());
        allX.resize(unique(allX.begin(), allX.end()) - allX.begin());
        sort(evs.begin(), evs.end());
        vector<long long> tmp = calc();
        assert(res[0] == -1 || res[0] == tmp[0]);
        assert(res[2] == -1 || res[2] == tmp[2]);
        res[0] = tmp[0], res[2] = tmp[2];
        res[1] += tmp[1];
        for (int i = 0; i < n; ++i) {
            swap(cuts[i][0], cuts[i][1]);
            swap(cuts[i][2], cuts[i][3]);
        }
    }
    cout << res[1] - res[0] + res[2] << '\n';
}

int main() {
    ios_base::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);

#ifdef LOCAL
    freopen("input.txt", "r", stdin);
    freopen("output.txt", "w", stdout);
    int T = 1;
    cin >> T;
    while (T--) {
        solve();
        cerr << "-----------\n";
        cout << "-----------\n";
    }
#else
    int T = 1;
    // cin >> T;
    while (T--) {
        solve();
    }
#endif

    return 0;
}
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 3 ms 604 KB Output is correct
9 Correct 2 ms 604 KB Output is correct
10 Correct 3 ms 604 KB Output is correct
11 Correct 3 ms 604 KB Output is correct
12 Correct 2 ms 604 KB Output is correct
13 Correct 3 ms 604 KB Output is correct
14 Correct 2 ms 604 KB Output is correct
15 Correct 2 ms 604 KB Output is correct
16 Correct 1 ms 348 KB Output is correct
17 Correct 1 ms 452 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 3 ms 604 KB Output is correct
9 Correct 2 ms 604 KB Output is correct
10 Correct 3 ms 604 KB Output is correct
11 Correct 3 ms 604 KB Output is correct
12 Correct 2 ms 604 KB Output is correct
13 Correct 3 ms 604 KB Output is correct
14 Correct 2 ms 604 KB Output is correct
15 Correct 2 ms 604 KB Output is correct
16 Correct 1 ms 348 KB Output is correct
17 Correct 1 ms 452 KB Output is correct
18 Correct 1 ms 348 KB Output is correct
19 Correct 1 ms 348 KB Output is correct
20 Correct 1 ms 348 KB Output is correct
21 Correct 3 ms 604 KB Output is correct
22 Correct 2 ms 604 KB Output is correct
23 Correct 3 ms 604 KB Output is correct
24 Correct 3 ms 604 KB Output is correct
25 Correct 3 ms 604 KB Output is correct
26 Correct 2 ms 604 KB Output is correct
27 Correct 3 ms 604 KB Output is correct
28 Correct 4 ms 604 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 604 KB Output is correct
2 Correct 2 ms 472 KB Output is correct
3 Correct 2 ms 604 KB Output is correct
4 Correct 3 ms 604 KB Output is correct
5 Correct 28 ms 3060 KB Output is correct
6 Correct 153 ms 16404 KB Output is correct
7 Correct 340 ms 33556 KB Output is correct
8 Correct 332 ms 33500 KB Output is correct
9 Correct 290 ms 34272 KB Output is correct
10 Correct 255 ms 33496 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 3 ms 604 KB Output is correct
3 Correct 32 ms 2708 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 604 KB Output is correct
6 Correct 515 ms 30520 KB Output is correct
7 Correct 14 ms 2232 KB Output is correct
8 Correct 171 ms 18004 KB Output is correct
9 Correct 203 ms 17880 KB Output is correct
10 Correct 215 ms 17112 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 3 ms 604 KB Output is correct
9 Correct 2 ms 604 KB Output is correct
10 Correct 3 ms 604 KB Output is correct
11 Correct 3 ms 604 KB Output is correct
12 Correct 2 ms 604 KB Output is correct
13 Correct 3 ms 604 KB Output is correct
14 Correct 2 ms 604 KB Output is correct
15 Correct 2 ms 604 KB Output is correct
16 Correct 1 ms 348 KB Output is correct
17 Correct 1 ms 452 KB Output is correct
18 Correct 1 ms 348 KB Output is correct
19 Correct 1 ms 348 KB Output is correct
20 Correct 1 ms 348 KB Output is correct
21 Correct 3 ms 604 KB Output is correct
22 Correct 2 ms 604 KB Output is correct
23 Correct 3 ms 604 KB Output is correct
24 Correct 3 ms 604 KB Output is correct
25 Correct 3 ms 604 KB Output is correct
26 Correct 2 ms 604 KB Output is correct
27 Correct 3 ms 604 KB Output is correct
28 Correct 4 ms 604 KB Output is correct
29 Correct 2 ms 604 KB Output is correct
30 Correct 2 ms 472 KB Output is correct
31 Correct 2 ms 604 KB Output is correct
32 Correct 3 ms 604 KB Output is correct
33 Correct 28 ms 3060 KB Output is correct
34 Correct 153 ms 16404 KB Output is correct
35 Correct 340 ms 33556 KB Output is correct
36 Correct 332 ms 33500 KB Output is correct
37 Correct 290 ms 34272 KB Output is correct
38 Correct 255 ms 33496 KB Output is correct
39 Correct 1 ms 348 KB Output is correct
40 Correct 3 ms 604 KB Output is correct
41 Correct 32 ms 2708 KB Output is correct
42 Correct 1 ms 348 KB Output is correct
43 Correct 3 ms 604 KB Output is correct
44 Correct 515 ms 30520 KB Output is correct
45 Correct 14 ms 2232 KB Output is correct
46 Correct 171 ms 18004 KB Output is correct
47 Correct 203 ms 17880 KB Output is correct
48 Correct 215 ms 17112 KB Output is correct
49 Correct 3 ms 604 KB Output is correct
50 Correct 3 ms 604 KB Output is correct
51 Correct 3 ms 604 KB Output is correct
52 Correct 217 ms 16480 KB Output is correct
53 Correct 151 ms 16620 KB Output is correct
54 Correct 200 ms 16864 KB Output is correct
55 Correct 470 ms 35028 KB Output is correct
56 Correct 334 ms 33756 KB Output is correct
57 Correct 486 ms 34780 KB Output is correct
58 Correct 463 ms 35284 KB Output is correct
59 Correct 210 ms 20956 KB Output is correct
60 Correct 211 ms 22112 KB Output is correct
61 Correct 232 ms 21728 KB Output is correct
62 Correct 260 ms 22244 KB Output is correct
63 Correct 499 ms 36548 KB Output is correct
64 Correct 285 ms 33500 KB Output is correct
65 Correct 497 ms 34336 KB Output is correct
66 Correct 499 ms 33744 KB Output is correct
67 Correct 434 ms 34004 KB Output is correct
68 Correct 401 ms 33168 KB Output is correct
69 Correct 434 ms 33380 KB Output is correct
70 Correct 436 ms 33016 KB Output is correct
71 Correct 240 ms 24800 KB Output is correct
72 Correct 242 ms 24968 KB Output is correct