# | 제출 시각 | 아이디 | 문제 | 언어 | 결과 | 실행 시간 | 메모리 |
---|---|---|---|---|---|---|---|
909388 | tnun | 경주 (Race) (IOI11_race) | C++14 | 0 ms | 0 KiB |
이 제출은 이전 버전의 oj.uz에서 채점하였습니다. 현재는 제출 당시와는 다른 서버에서 채점을 하기 때문에, 다시 제출하면 결과가 달라질 수도 있습니다.
///////////////////////////////////////////////
//
// _____ ____ _____ ___ ___ __ __
// |_ _| / __ \ |_ _| |__ \ / _ \ /_ | /_ |
// | | | | | | | | ) | | | | | | | | |
// | | | | | | | | / / | | | | | | | |
// _| |_ | |__| | _| |_ / /_ | |_| | | | | |
// |_____| \____/ |_____| |____| \___/ |_| |_|
//
//
// Year: IOI'2011
// Problem: Race, Day 1
// Solution: 100 Points, O(NlogN)
// Author: Pedro Paredes
//
///////////////////////////////////////////////
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <vector>
#include <algorithm>
using namespace std;
typedef pair<int, int> pii;
#define MAXN 200050
#define MAXK 1000050
#define F first
#define S second
int N, K, global_answer; // Input and result variables
int split_node, current_max; // Variables to calculate centroid
int book_keeping; // Book keeping helper
int H[MAXN][2]; // Input variables
int L[MAXN];
int processed[MAXN]; // Markers to help main recursion
int size[MAXN]; // Size of subtrees in rooted tree
int achievable[MAXK]; // Helper arrays for minimum paths crossing v
int minimum_paths[MAXK];
vector<pii> neighbors[MAXN]; // The actual tree
///////////////////////////////////////////////
//
// Goal: Calculate the size of each subtree
//
///////////////////////////////////////////////
void calc_size(int current, int parent)
{
size[current] = 0;
// Recurse on unprocessed nodes and update size
int i;
for (i = 0; i < (int)neighbors[current].size(); i++)
if (!processed[neighbors[current][i].F] && neighbors[current][i].F != parent)
{
calc_size(neighbors[current][i].F, current);
size[current] += 1 + size[neighbors[current][i].F];
}
}
///////////////////////////////////////////////
//
// Goal: Calculate the centroid
//
///////////////////////////////////////////////
void select_split_node(int current, int parent, int total)
{
int node_max = (total - size[current] - 1);
// Recurse on unprocessed nodes updating the maximum subtree on node_max
int i;
for (i = 0; i < (int)neighbors[current].size(); i++)
if (!processed[neighbors[current][i].F] && neighbors[current][i].F != parent)
{
select_split_node(neighbors[current][i].F, current, total);
node_max = max(node_max, 1 + size[neighbors[current][i].F]);
}
if (node_max < current_max)
{
split_node = current;
current_max = node_max;
}
}
///////////////////////////////////////////////
//
// Goal: DFS from the centroid to calculate all paths
//
///////////////////////////////////////////////
void dfs_from_node(int current, int parent, int current_cost, int current_length, int fill)
{
if (current_cost > K)
return;
if (!fill) // If we are calculating the paths
{
if (achievable[K - current_cost] == book_keeping)
if (current_length + minimum_paths[K - current_cost] < global_answer || global_answer == -1)
global_answer = current_length + minimum_paths[K - current_cost];
if (current_cost == K)
if (current_length < global_answer || global_answer == -1)
global_answer = current_length;
}
else // If we are filling the helper array
{
if (achievable[current_cost] < book_keeping)
{
achievable[current_cost] = book_keeping;
minimum_paths[current_cost] = current_length;
}
else if (current_length < minimum_paths[current_cost])
{
achievable[current_cost] = book_keeping;
minimum_paths[current_cost] = current_length;
}
}
// Recurse on unprocessed nodes
int i;
for (i = 0; i < (int)neighbors[current].size(); i++)
if (!processed[neighbors[current][i].F] && neighbors[current][i].F != parent)
dfs_from_node(neighbors[current][i].F, current, current_cost + neighbors[current][i].S, current_length + 1, fill);
}
///////////////////////////////////////////////
//
// Goal: Calculate best for subtree
//
///////////////////////////////////////////////
void process(int current)
{
// Fill the size array
calc_size(current, -1);
// Base case
if (size[current] <= 1)
return;
// Calculate the centroid and put it in split_node
split_node = -1;
current_max = size[current] + 3;
select_split_node(current, -1, size[current] + 1);
// Double dfs to calculate minimums and fill helper array
book_keeping++;
int i;
for (i = 0; i < (int)neighbors[split_node].size(); i++)
if (!processed[neighbors[split_node][i].F])
{
dfs_from_node(neighbors[split_node][i].F, split_node, neighbors[split_node][i].S, 1, 0);
dfs_from_node(neighbors[split_node][i].F, split_node, neighbors[split_node][i].S, 1, 1);
}
int local_split_node = split_node; // Since split_node is global
processed[split_node] = 1; // Mark as processed to cap recursion
// Call main method on each subtree from centroid
for (i = 0; i < (int)neighbors[local_split_node].size(); i++)
if (!processed[neighbors[local_split_node][i].F])
process(neighbors[local_split_node][i].F);
}
///////////////////////////////////////////////
//
// Goal: Answer the task
//
///////////////////////////////////////////////
int best_path(int _N, int _K, int H[][2], int L[])
{
// Reset arrays and variables
memset(processed, 0, sizeof processed);
memset(achievable, 0, sizeof achievable);
memset(minimum_paths, 0, sizeof minimum_paths);
N = _N;
K = _K;
book_keeping = 0;
// Build tree
int i;
for (i = 0; i < N - 1; i++)
{
neighbors[H[i][0]].push_back(pii(H[i][1], L[i]));
neighbors[H[i][1]].push_back(pii(H[i][0], L[i]));
}
global_answer = -1;
// Call main method for whole tree
process(0);
return global_answer;
}
///////////////////////////////////////////////
//
// Goal: Read the input
//
///////////////////////////////////////////////
void read_input()
{
scanf("%d %d", &N, &K);
int i;
for (i = 0; i < N - 1; i++)
scanf("%d %d %d", &H[i][0], &H[i][1], &L[i]);
}
///////////////////////////////////////////////
//
// Goal: Main
//
///////////////////////////////////////////////
int main()
{
int ans;
read_input();
ans = best_path(N, K, H, L);
printf("%d\n", ans);
return 0;
}