Submission #907088

# Submission time Handle Problem Language Result Execution time Memory
907088 2024-01-15T06:53:22 Z gaga999 Sandcastle 2 (JOI22_ho_t5) C++17
100 / 100
557 ms 21328 KB
#include <cstdio>
#include <stdio.h>
#include <iostream>
#include <math.h>
#include <vector>
#include <queue>
#include <stack>
#include <deque>
#include <algorithm>
#include <utility>
#include <set>
#include <map>
#include <stdlib.h>
#include <cstring>
#include <string.h>
#include <string>
#include <sstream>
#include <assert.h>
#include <climits>
#include <sstream>
#include <numeric>
#include <time.h>
#include <limits.h>
#include <list>
#include <bitset>
#include <unordered_map>
#include <unordered_set>
#include <random>
#include <iomanip>
#include <complex>
#include <chrono>
#include <fstream>
#include <functional>
#include <unistd.h>
// #pragma GCC optimize("Ofast,no-stack-protector")
// #pragma GCC optimize("O3,unroll-loops")
// #pragma GCC target("avx,avx2,bmi,bmi2,lzcnt,popcnt")
#define lowbit(x) ((x) & -(x))
#define ml(a, b) ((1ll * (a) * (b)) % M)
#define tml(a, b) (a) = ((1ll * (a) * (b)) % M)
#define ad(a, b) ((0ll + (a) + (b)) % M)
#define tad(a, b) (a) = ((0ll + (a) + (b)) % M)
#define mi(a, b) ((0ll + M + (a) - (b)) % M)
#define tmi(a, b) (a) = ((0ll + M + (a) - (b)) % M)
#define tmin(a, b) (a) = min((a), (b))
#define tmax(a, b) (a) = max((a), (b))
#define iter(a) (a).begin(), (a).end()
#define riter(a) (a).rbegin(), (a).rend()
#define init(a, b) memset((a), (b), sizeof(a))
#define cpy(a, b) memcpy((a), (b), sizeof(a))
#define uni(a) a.resize(unique(iter(a)) - a.begin())
#define pb emplace_back
#define mpr make_pair
#define ls(i) ((i) << 1)
#define rs(i) ((i) << 1 | 1)
#define INF 0x3f3f3f3f
#define NIF 0xc0c0c0c0
#define eps 1e-9
#define F first
#define S second
#define AC cin.tie(0)->sync_with_stdio(0)
using namespace std;
typedef long long llt;
typedef pair<int, int> pii;
typedef pair<double, double> pdd;
typedef pair<llt, llt> pll;
typedef complex<double> cd;
// const int M = 998244353;

// random_device rm;
// mt19937 rg(rm());
// default_random_engine rg(rm());
// uniform_int_distribution<int> rd(INT_MIN, INT_MAX);
// uniform_real_distribution<double> rd(0, M_PI);

void db() { cerr << "\n"; }
template <class T, class... U>
void db(T a, U... b) { cerr << a << " ", db(b...); }

inline char gc()
{
    const static int SZ = 1 << 16;
    static char buf[SZ], *p1, *p2;
    if (p1 == p2 && (p2 = buf + fread(p1 = buf, 1, SZ, stdin), p1 == p2))
        return -1;
    return *p1++;
}
void rd() {}
template <typename T, typename... U>
void rd(T &x, U &...y)
{
    x = 0;
    bool f = 0;
    char c = gc();
    while (!isdigit(c))
        f ^= !(c ^ 45), c = gc();
    while (isdigit(c))
        x = (x << 1) + (x << 3) + (c ^ 48), c = gc();
    f && (x = -x), rd(y...);
}

template <typename T>
void prt(T x)
{
    if (x < 0)
        putchar('-'), x = -x;
    if (x > 9)
        prt(x / 10);
    putchar((x % 10) ^ 48);
}

vector<vector<int>> gd, v[3][3][3][3], v1[3][3], v2[3][3], vr;
#define p1 [x - 1][y]
#define p2 [x][y - 1]
#define p3 [x][y + 1]
#define p4 [x + 1][y]
#define c1 x != l
#define c2 y != u
#define c3 y != d
#define c4 x != r
int gv(int x, int y, int l, int r, int u, int d)
{
    int mn = INF, cr = gd[x][y], res = 0;
    if (c1 && gd p1 > cr && gd p1 < mn)
        mn = gd p1, res = 1;
    if (c2 && gd p2 > cr && gd p2 < mn)
        mn = gd p2, res = 2;
    if (c3 && gd p3 > cr && gd p3 < mn)
        mn = gd p3, res = 3;
    if (c4 && gd p4 > cr && gd p4 < mn)
        mn = gd p4, res = 4;
    return res;
}
#define pp l, r, u, d
int slv(int x, int y, int l, int r, int u, int d)
{
    if (c1 && gv(x - 1, y, pp) == 4)
        return 0;
    if (c2 && gv(x, y - 1, pp) == 3)
        return 0;
    if (c3 && gv(x, y + 1, pp) == 2)
        return 0;
    if (c4 && gv(x + 1, y, pp) == 1)
        return 0;
    return 1;
}
#define vt(i, j) vector<vector<int>>(i, vector<int>(j))
int cnt[50004];
signed main()
{
    int n, m;
    rd(n, m);
    if (n > m)
    {
        swap(n, m);
        gd = vt(n, m);
        for (int i = 0; i < m; i++)
            for (int j = 0; j < n; j++)
                rd(gd[j][i]);
    }
    else
    {
        gd = vt(n, m);
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
                rd(gd[i][j]);
    }
    for (int l = 0; l < 3; l++)
    {
        for (int r = 0; r < 3; r++)
        {
            for (int u = 0; u < 3; u++)
            {
                for (int d = 0; d < 3; d++)
                {
                    v[l][r][u][d] = vt(n, m);
                    for (int i = 0; i < n; i++)
                        for (int j = 0; j < m; j++)
                            v[l][r][u][d][i][j] =
                                slv(i, j, max(0, i - l), min(n - 1, i + r), max(0, j - u), min(m - 1, j + d));
                }
            }
        }
    }
    for (int l = 0; l < 3; l++)
    {
        for (int r = 0; r < 3; r++)
        {
            v1[l][r] = v2[l][r] = vt(n, m);
            for (int i = 0; i < n; i++)
            {
                v1[l][r][i][0] = v[l][r][2][2][i][0];
                for (int j = 1; j < m; j++)
                    v1[l][r][i][j] = v[l][r][2][2][i][j] + v1[l][r][i][j - 1];
            }
            for (int j = 0; j < m; j++)
            {
                v2[l][r][0][j] = v[2][2][l][r][0][j];
                for (int i = 1; i < n; i++)
                    v2[l][r][i][j] = v[2][2][l][r][i][j] + v2[l][r][i - 1][j];
            }
        }
    }
    vr = vt(n, m);
    for (int i = 0; i < m; i++)
        vr[0][i] = v[2][2][2][2][0][i];
    for (int i = 1; i < n; i++)
    {
        vr[i][0] = v[2][2][2][2][0][i];
        for (int j = 1; j < m; j++)
        {
            vr[i][j] = vr[i - 1][j] + vr[i][j - 1] -
                       vr[i - 1][j - 1] + v[2][2][2][2][i][j];
        }
    }
    llt ans = 0;
    for (int l = 0; l < n; l++)
    {
        for (int r = 0; r < n; r++)
        {
            if (r - l < 4)
            {
                for (int i = 3; i < m; i++)
                {
                    int tp = 1;
                    for (int a = l; a <= r; a++)
                    {
                        int x = min(2, a - l), y = min(2, r - a);
                        tp += v1[x][y][a][i - 2] - v[x][y][0][2][a][i - 3] - v[x][y][1][2][a][i - 2];
                    }
                    if (tp >= 0)
                        cnt[tp]++;
                    tp = 0;
                    for (int a = l; a <= r; a++)
                    {
                        int x = min(2, a - l), y = min(2, r - a);
                        tp += v1[x][y][a][i - 2] + v[x][y][2][1][a][i - 1] + v[x][y][2][0][a][i];
                    }
                    ans += cnt[tp];
                }
                for (int i = 0; i < m; i++)
                {
                    for (int j = i; j < min(i + 3, m); j++)
                    {
                        int tp = 0;
                        for (int a = l; a <= r; a++)
                            for (int b = i; b <= j; b++)
                                tp += v[min(2, a - l)][min(2, r - a)][min(2, b - i)][min(2, j - b)][a][b];
                        if (tp == 1)
                            ans++;
                    }
                }
            }
            else
            {
                for (int i = 0; i < m; i++)
                {
                    for (int j = i; j < min(i + 3, m); j++)
                    {
                        int tp = 0;
                        for (int b = i; b <= j; b++)
                        {
                            int x = min(b - i, 2), y = min(j - b, 2);
                            tp += v[0][2][x][y][l][b];
                            tp += v[1][2][x][y][l + 1][b];
                            tp += v[2][0][x][y][r][b];
                            tp += v[2][1][x][y][r - 1][b];
                            tp += v2[x][y][r - 2][b] - v2[x][y][l + 1][b];
                        }
                        if (tp == 1)
                            ans++;
                    }
                }
                for (int i = 3; i < m; i++)
                {
                    int tp = 1;
                    tp += v1[0][2][l][i - 2] - v[0][2][0][2][l][i - 3] - v[0][2][1][2][l][i - 2];
                    tp += v1[1][2][l + 1][i - 2] - v[1][2][0][2][l + 1][i - 3] - v[1][2][1][2][l + 1][i - 2];
                    tp += v1[2][0][r][i - 2] - v[2][0][0][2][r][i - 3] - v[2][0][1][2][r][i - 2];
                    tp += v1[2][1][r - 1][i - 2] - v[2][1][0][2][r - 1][i - 3] - v[2][1][1][2][r - 1][i - 2];
                    tp += vr[r - 2][i - 2] - vr[l + 1][i - 2] -
                          v2[0][2][r - 2][i - 3] + v2[0][2][l + 1][i - 3] -
                          v2[1][2][r - 2][i - 2] + v2[1][2][l + 1][i - 2];
                    if (tp >= 0)
                        cnt[tp]++;
                    tp = 0;
                    tp += v1[0][2][l][i - 2] + v[0][2][2][0][l][i] + v[0][2][2][1][l][i - 1];
                    tp += v1[1][2][l + 1][i - 2] + v[1][2][2][0][l + 1][i] + v[1][2][2][1][l + 1][i - 1];
                    tp += v1[2][0][r][i - 2] + v[2][0][2][0][r][i] + v[2][0][2][1][r][i - 1];
                    tp += v1[2][1][r - 1][i - 2] + v[2][1][2][0][r - 1][i] + v[2][1][2][1][r - 1][i - 1];
                    tp += vr[r - 2][i - 2] - vr[l + 1][i - 2] +
                          v2[2][0][r - 2][i] - v2[2][0][l + 1][i] +
                          v2[2][1][r - 2][i - 1] - v2[2][1][l + 1][i - 1];
                    ans += cnt[tp];
                }
            }
            init(cnt, 0);
        }
    }
    prt(ans), putchar('\n');
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 50 ms 20492 KB Output is correct
3 Correct 47 ms 20228 KB Output is correct
4 Correct 47 ms 20552 KB Output is correct
5 Correct 43 ms 20628 KB Output is correct
6 Correct 60 ms 20548 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 2 ms 1116 KB Output is correct
8 Correct 2 ms 1116 KB Output is correct
9 Correct 9 ms 1116 KB Output is correct
10 Correct 7 ms 1112 KB Output is correct
11 Correct 2 ms 1112 KB Output is correct
12 Correct 2 ms 1116 KB Output is correct
13 Correct 7 ms 1340 KB Output is correct
14 Correct 5 ms 1116 KB Output is correct
15 Correct 8 ms 1116 KB Output is correct
16 Correct 7 ms 1116 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 2 ms 1116 KB Output is correct
8 Correct 2 ms 1116 KB Output is correct
9 Correct 9 ms 1116 KB Output is correct
10 Correct 7 ms 1112 KB Output is correct
11 Correct 2 ms 1112 KB Output is correct
12 Correct 2 ms 1116 KB Output is correct
13 Correct 7 ms 1340 KB Output is correct
14 Correct 5 ms 1116 KB Output is correct
15 Correct 8 ms 1116 KB Output is correct
16 Correct 7 ms 1116 KB Output is correct
17 Correct 7 ms 3416 KB Output is correct
18 Correct 34 ms 3612 KB Output is correct
19 Correct 21 ms 3420 KB Output is correct
20 Correct 41 ms 3744 KB Output is correct
21 Correct 36 ms 3676 KB Output is correct
22 Correct 38 ms 3756 KB Output is correct
23 Correct 37 ms 3420 KB Output is correct
24 Correct 29 ms 3164 KB Output is correct
25 Correct 41 ms 3676 KB Output is correct
26 Correct 41 ms 3676 KB Output is correct
27 Correct 49 ms 3672 KB Output is correct
28 Correct 45 ms 3676 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 2 ms 1116 KB Output is correct
8 Correct 2 ms 1116 KB Output is correct
9 Correct 9 ms 1116 KB Output is correct
10 Correct 7 ms 1112 KB Output is correct
11 Correct 2 ms 1112 KB Output is correct
12 Correct 2 ms 1116 KB Output is correct
13 Correct 7 ms 1340 KB Output is correct
14 Correct 5 ms 1116 KB Output is correct
15 Correct 8 ms 1116 KB Output is correct
16 Correct 7 ms 1116 KB Output is correct
17 Correct 7 ms 3416 KB Output is correct
18 Correct 34 ms 3612 KB Output is correct
19 Correct 21 ms 3420 KB Output is correct
20 Correct 41 ms 3744 KB Output is correct
21 Correct 36 ms 3676 KB Output is correct
22 Correct 38 ms 3756 KB Output is correct
23 Correct 37 ms 3420 KB Output is correct
24 Correct 29 ms 3164 KB Output is correct
25 Correct 41 ms 3676 KB Output is correct
26 Correct 41 ms 3676 KB Output is correct
27 Correct 49 ms 3672 KB Output is correct
28 Correct 45 ms 3676 KB Output is correct
29 Correct 41 ms 20444 KB Output is correct
30 Correct 202 ms 20644 KB Output is correct
31 Correct 515 ms 21328 KB Output is correct
32 Correct 54 ms 20296 KB Output is correct
33 Correct 475 ms 21304 KB Output is correct
34 Correct 447 ms 21076 KB Output is correct
35 Correct 201 ms 14160 KB Output is correct
36 Correct 289 ms 20616 KB Output is correct
37 Correct 516 ms 21204 KB Output is correct
38 Correct 489 ms 21024 KB Output is correct
39 Correct 504 ms 21024 KB Output is correct
40 Correct 539 ms 21028 KB Output is correct
41 Correct 518 ms 21136 KB Output is correct
42 Correct 557 ms 21328 KB Output is correct
43 Correct 497 ms 21040 KB Output is correct
44 Correct 510 ms 21028 KB Output is correct