Submission #907085

# Submission time Handle Problem Language Result Execution time Memory
907085 2024-01-15T06:50:39 Z gaga999 Sandcastle 2 (JOI22_ho_t5) C++17
100 / 100
470 ms 21108 KB
#include <cstdio>
#include <stdio.h>
#include <iostream>
#include <math.h>
#include <vector>
#include <queue>
#include <stack>
#include <deque>
#include <algorithm>
#include <utility>
#include <set>
#include <map>
#include <stdlib.h>
#include <cstring>
#include <string.h>
#include <string>
#include <sstream>
#include <assert.h>
#include <climits>
#include <sstream>
#include <numeric>
#include <time.h>
#include <limits.h>
#include <list>
#include <bitset>
#include <unordered_map>
#include <unordered_set>
#include <random>
#include <iomanip>
#include <complex>
#include <chrono>
#include <fstream>
#include <functional>
#include <unistd.h>
// #pragma GCC optimize("Ofast,no-stack-protector")
// #pragma GCC optimize("O3,unroll-loops")
// #pragma GCC target("avx,avx2,bmi,bmi2,lzcnt,popcnt")
#define lowbit(x) ((x) & -(x))
#define ml(a, b) ((1ll * (a) * (b)) % M)
#define tml(a, b) (a) = ((1ll * (a) * (b)) % M)
#define ad(a, b) ((0ll + (a) + (b)) % M)
#define tad(a, b) (a) = ((0ll + (a) + (b)) % M)
#define mi(a, b) ((0ll + M + (a) - (b)) % M)
#define tmi(a, b) (a) = ((0ll + M + (a) - (b)) % M)
#define tmin(a, b) (a) = min((a), (b))
#define tmax(a, b) (a) = max((a), (b))
#define iter(a) (a).begin(), (a).end()
#define riter(a) (a).rbegin(), (a).rend()
#define init(a, b) memset((a), (b), sizeof(a))
#define cpy(a, b) memcpy((a), (b), sizeof(a))
#define uni(a) a.resize(unique(iter(a)) - a.begin())
#define pb emplace_back
#define mpr make_pair
#define ls(i) ((i) << 1)
#define rs(i) ((i) << 1 | 1)
#define INF 0x3f3f3f3f
#define NIF 0xc0c0c0c0
#define eps 1e-9
#define F first
#define S second
#define AC cin.tie(0)->sync_with_stdio(0)
using namespace std;
typedef long long llt;
typedef pair<int, int> pii;
typedef pair<double, double> pdd;
typedef pair<llt, llt> pll;
typedef complex<double> cd;
// const int M = 998244353;

// random_device rm;
// mt19937 rg(rm());
// default_random_engine rg(rm());
// uniform_int_distribution<int> rd(INT_MIN, INT_MAX);
// uniform_real_distribution<double> rd(0, M_PI);

void db() { cerr << "\n"; }
template <class T, class... U>
void db(T a, U... b) { cerr << a << " ", db(b...); }

inline char gc()
{
    const static int SZ = 1 << 16;
    static char buf[SZ], *p1, *p2;
    if (p1 == p2 && (p2 = buf + fread(p1 = buf, 1, SZ, stdin), p1 == p2))
        return -1;
    return *p1++;
}
void rd() {}
template <typename T, typename... U>
void rd(T &x, U &...y)
{
    x = 0;
    bool f = 0;
    char c = gc();
    while (!isdigit(c))
        f ^= !(c ^ 45), c = gc();
    while (isdigit(c))
        x = (x << 1) + (x << 3) + (c ^ 48), c = gc();
    f && (x = -x), rd(y...);
}

template <typename T>
void prt(T x)
{
    if (x < 0)
        putchar('-'), x = -x;
    if (x > 9)
        prt(x / 10);
    putchar((x % 10) ^ 48);
}

vector<vector<int>> gd, v[3][3][3][3], v1[3][3], v2[3][3], vr;
#define p1 [x - 1][y]
#define p2 [x][y - 1]
#define p3 [x][y + 1]
#define p4 [x + 1][y]
#define c1 x != l
#define c2 y != u
#define c3 y != d
#define c4 x != r
int gv(int x, int y, int l, int r, int u, int d)
{
    int mn = INF, cr = gd[x][y], res = 0;
    if (c1 && gd p1 > cr && gd p1 < mn)
        mn = gd p1, res = 1;
    if (c2 && gd p2 > cr && gd p2 < mn)
        mn = gd p2, res = 2;
    if (c3 && gd p3 > cr && gd p3 < mn)
        mn = gd p3, res = 3;
    if (c4 && gd p4 > cr && gd p4 < mn)
        mn = gd p4, res = 4;
    return res;
}
#define pp l, r, u, d
inline int slv(int x, int y, int l, int r, int u, int d)
{
    if (c1 && gv(x - 1, y, pp) == 4)
        return 0;
    if (c2 && gv(x, y - 1, pp) == 3)
        return 0;
    if (c3 && gv(x, y + 1, pp) == 2)
        return 0;
    if (c4 && gv(x + 1, y, pp) == 1)
        return 0;
    return 1;
}
#define vt(i, j) vector<vector<int>>(i, vector<int>(j))
int cnt[50004];
signed main()
{
    int n, m;
    rd(n, m);
    if (n > m)
    {
        swap(n, m);
        gd = vt(n, m);
        for (int i = 0; i < m; i++)
            for (int j = 0; j < n; j++)
                rd(gd[j][i]);
    }
    else
    {
        gd = vt(n, m);
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
                rd(gd[i][j]);
    }
    for (int l = 0; l < 3; l++)
    {
        for (int r = 0; r < 3; r++)
        {
            for (int u = 0; u < 3; u++)
            {
                for (int d = 0; d < 3; d++)
                {
                    v[l][r][u][d] = vt(n, m);
                    for (int i = 0; i < n; i++)
                        for (int j = 0; j < m; j++)
                            v[l][r][u][d][i][j] =
                                slv(i, j, max(0, i - l), min(n - 1, i + r), max(0, j - u), min(m - 1, j + d));
                }
            }
        }
    }
    for (int l = 0; l < 3; l++)
    {
        for (int r = 0; r < 3; r++)
        {
            v1[l][r] = v2[l][r] = vt(n, m);
            for (int i = 0; i < n; i++)
            {
                v1[l][r][i][0] = v[l][r][2][2][i][0];
                for (int j = 1; j < m; j++)
                    v1[l][r][i][j] = v[l][r][2][2][i][j] + v1[l][r][i][j - 1];
            }
            for (int j = 0; j < m; j++)
            {
                v2[l][r][0][j] = v[2][2][l][r][0][j];
                for (int i = 1; i < n; i++)
                    v2[l][r][i][j] = v[2][2][l][r][i][j] + v2[l][r][i - 1][j];
            }
        }
    }
    vr = vt(n, m);
    for (int i = 0; i < m; i++)
        vr[0][i] = v[2][2][2][2][0][i];
    for (int i = 1; i < n; i++)
    {
        vr[i][0] = v[2][2][2][2][0][i];
        for (int j = 1; j < m; j++)
        {
            vr[i][j] = vr[i - 1][j] + vr[i][j - 1] -
                       vr[i - 1][j - 1] + v[2][2][2][2][i][j];
        }
    }
    llt ans = 0;
    for (int l = 0; l < n; l++)
    {
        for (int r = 0; r < n; r++)
        {
            if (r - l < 4)
            {
                for (int i = 3; i < m; i++)
                {
                    int tp = 1;
                    for (int a = l; a <= r; a++)
                    {
                        int x = min(2, a - l), y = min(2, r - a);
                        tp += v1[x][y][a][i - 2] - v[x][y][0][2][a][i - 3] - v[x][y][1][2][a][i - 2];
                    }
                    if (tp >= 0)
                        cnt[tp]++;
                    tp = 0;
                    for (int a = l; a <= r; a++)
                    {
                        int x = min(2, a - l), y = min(2, r - a);
                        tp += v1[x][y][a][i - 2] + v[x][y][2][1][a][i - 1] + v[x][y][2][0][a][i];
                    }
                    ans += cnt[tp];
                }
                for (int i = 3; i < m; i++)
                {
                    int tp = 1;
                    for (int a = l; a <= r; a++)
                    {
                        int x = min(2, a - l), y = min(2, r - a);
                        tp += v1[x][y][a][i - 2] - v[x][y][0][2][a][i - 3] - v[x][y][1][2][a][i - 2];
                    }
                    if (tp >= 0)
                        cnt[tp]--;
                }
                for (int i = 0; i < m; i++)
                {
                    for (int j = i; j < min(i + 3, m); j++)
                    {
                        int tp = 0;
                        for (int a = l; a <= r; a++)
                            for (int b = i; b <= j; b++)
                                tp += v[min(2, a - l)][min(2, r - a)][min(2, b - i)][min(2, j - b)][a][b];
                        if (tp == 1)
                            ans++;
                    }
                }
            }
            else
            {
                for (int i = 0; i < m; i++)
                {
                    for (int j = i; j < min(i + 3, m); j++)
                    {
                        int tp = 0;
                        for (int b = i; b <= j; b++)
                        {
                            int x = min(b - i, 2), y = min(j - b, 2);
                            tp += v[0][2][x][y][l][b];
                            tp += v[1][2][x][y][l + 1][b];
                            tp += v[2][0][x][y][r][b];
                            tp += v[2][1][x][y][r - 1][b];
                            tp += v2[x][y][r - 2][b] - v2[x][y][l + 1][b];
                        }
                        if (tp == 1)
                            ans++;
                    }
                }
                for (int i = 3; i < m; i++)
                {
                    int tp = 1;
                    tp += v1[0][2][l][i - 2] - v[0][2][0][2][l][i - 3] - v[0][2][1][2][l][i - 2];
                    tp += v1[1][2][l + 1][i - 2] - v[1][2][0][2][l + 1][i - 3] - v[1][2][1][2][l + 1][i - 2];
                    tp += v1[2][0][r][i - 2] - v[2][0][0][2][r][i - 3] - v[2][0][1][2][r][i - 2];
                    tp += v1[2][1][r - 1][i - 2] - v[2][1][0][2][r - 1][i - 3] - v[2][1][1][2][r - 1][i - 2];
                    tp += vr[r - 2][i - 2] - vr[l + 1][i - 2] -
                          v2[0][2][r - 2][i - 3] + v2[0][2][l + 1][i - 3] -
                          v2[1][2][r - 2][i - 2] + v2[1][2][l + 1][i - 2];
                    if (tp >= 0)
                        cnt[tp]++;
                    tp = 0;
                    tp += v1[0][2][l][i - 2] + v[0][2][2][0][l][i] + v[0][2][2][1][l][i - 1];
                    tp += v1[1][2][l + 1][i - 2] + v[1][2][2][0][l + 1][i] + v[1][2][2][1][l + 1][i - 1];
                    tp += v1[2][0][r][i - 2] + v[2][0][2][0][r][i] + v[2][0][2][1][r][i - 1];
                    tp += v1[2][1][r - 1][i - 2] + v[2][1][2][0][r - 1][i] + v[2][1][2][1][r - 1][i - 1];
                    tp += vr[r - 2][i - 2] - vr[l + 1][i - 2] +
                          v2[2][0][r - 2][i] - v2[2][0][l + 1][i] +
                          v2[2][1][r - 2][i - 1] - v2[2][1][l + 1][i - 1];
                    ans += cnt[tp];
                }
                for (int i = 3; i < m; i++)
                {
                    int tp = 1;
                    tp += v1[0][2][l][i - 2] - v[0][2][0][2][l][i - 3] - v[0][2][1][2][l][i - 2];
                    tp += v1[1][2][l + 1][i - 2] - v[1][2][0][2][l + 1][i - 3] - v[1][2][1][2][l + 1][i - 2];
                    tp += v1[2][0][r][i - 2] - v[2][0][0][2][r][i - 3] - v[2][0][1][2][r][i - 2];
                    tp += v1[2][1][r - 1][i - 2] - v[2][1][0][2][r - 1][i - 3] - v[2][1][1][2][r - 1][i - 2];
                    tp += vr[r - 2][i - 2] - vr[l + 1][i - 2] -
                          v2[0][2][r - 2][i - 3] + v2[0][2][l + 1][i - 3] -
                          v2[1][2][r - 2][i - 2] + v2[1][2][l + 1][i - 2];
                    if (tp >= 0)
                        cnt[tp]--;
                }
            }
        }
    }
    prt(ans), putchar('\n');
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 46 ms 20388 KB Output is correct
3 Correct 46 ms 20164 KB Output is correct
4 Correct 48 ms 20232 KB Output is correct
5 Correct 41 ms 20408 KB Output is correct
6 Correct 56 ms 20476 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 2 ms 860 KB Output is correct
9 Correct 6 ms 1116 KB Output is correct
10 Correct 5 ms 1112 KB Output is correct
11 Correct 2 ms 860 KB Output is correct
12 Correct 3 ms 856 KB Output is correct
13 Correct 4 ms 1116 KB Output is correct
14 Correct 5 ms 856 KB Output is correct
15 Correct 5 ms 1116 KB Output is correct
16 Correct 8 ms 1116 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 2 ms 860 KB Output is correct
9 Correct 6 ms 1116 KB Output is correct
10 Correct 5 ms 1112 KB Output is correct
11 Correct 2 ms 860 KB Output is correct
12 Correct 3 ms 856 KB Output is correct
13 Correct 4 ms 1116 KB Output is correct
14 Correct 5 ms 856 KB Output is correct
15 Correct 5 ms 1116 KB Output is correct
16 Correct 8 ms 1116 KB Output is correct
17 Correct 6 ms 3164 KB Output is correct
18 Correct 29 ms 3456 KB Output is correct
19 Correct 21 ms 3164 KB Output is correct
20 Correct 24 ms 3420 KB Output is correct
21 Correct 25 ms 3376 KB Output is correct
22 Correct 28 ms 3420 KB Output is correct
23 Correct 26 ms 3164 KB Output is correct
24 Correct 21 ms 3164 KB Output is correct
25 Correct 34 ms 3416 KB Output is correct
26 Correct 32 ms 3420 KB Output is correct
27 Correct 33 ms 3416 KB Output is correct
28 Correct 33 ms 3416 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 2 ms 860 KB Output is correct
9 Correct 6 ms 1116 KB Output is correct
10 Correct 5 ms 1112 KB Output is correct
11 Correct 2 ms 860 KB Output is correct
12 Correct 3 ms 856 KB Output is correct
13 Correct 4 ms 1116 KB Output is correct
14 Correct 5 ms 856 KB Output is correct
15 Correct 5 ms 1116 KB Output is correct
16 Correct 8 ms 1116 KB Output is correct
17 Correct 6 ms 3164 KB Output is correct
18 Correct 29 ms 3456 KB Output is correct
19 Correct 21 ms 3164 KB Output is correct
20 Correct 24 ms 3420 KB Output is correct
21 Correct 25 ms 3376 KB Output is correct
22 Correct 28 ms 3420 KB Output is correct
23 Correct 26 ms 3164 KB Output is correct
24 Correct 21 ms 3164 KB Output is correct
25 Correct 34 ms 3416 KB Output is correct
26 Correct 32 ms 3420 KB Output is correct
27 Correct 33 ms 3416 KB Output is correct
28 Correct 33 ms 3416 KB Output is correct
29 Correct 36 ms 20260 KB Output is correct
30 Correct 215 ms 20564 KB Output is correct
31 Correct 470 ms 20992 KB Output is correct
32 Correct 49 ms 20308 KB Output is correct
33 Correct 412 ms 21000 KB Output is correct
34 Correct 391 ms 21108 KB Output is correct
35 Correct 173 ms 13708 KB Output is correct
36 Correct 258 ms 20304 KB Output is correct
37 Correct 430 ms 20820 KB Output is correct
38 Correct 424 ms 20844 KB Output is correct
39 Correct 431 ms 21076 KB Output is correct
40 Correct 441 ms 20844 KB Output is correct
41 Correct 421 ms 20840 KB Output is correct
42 Correct 445 ms 21076 KB Output is correct
43 Correct 428 ms 20816 KB Output is correct
44 Correct 441 ms 20824 KB Output is correct