답안 #907083

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
907083 2024-01-15T06:49:33 Z gaga999 Sandcastle 2 (JOI22_ho_t5) C++17
100 / 100
461 ms 21076 KB
#include <cstdio>
#include <stdio.h>
#include <iostream>
#include <math.h>
#include <vector>
#include <queue>
#include <stack>
#include <deque>
#include <algorithm>
#include <utility>
#include <set>
#include <map>
#include <stdlib.h>
#include <cstring>
#include <string.h>
#include <string>
#include <sstream>
#include <assert.h>
#include <climits>
#include <sstream>
#include <numeric>
#include <time.h>
#include <limits.h>
#include <list>
#include <bitset>
#include <unordered_map>
#include <unordered_set>
#include <random>
#include <iomanip>
#include <complex>
#include <chrono>
#include <fstream>
#include <functional>
#include <unistd.h>
// #pragma GCC optimize("Ofast,no-stack-protector")
// #pragma GCC optimize("O3,unroll-loops")
// #pragma GCC target("avx,avx2,bmi,bmi2,lzcnt,popcnt")
#define lowbit(x) ((x) & -(x))
#define ml(a, b) ((1ll * (a) * (b)) % M)
#define tml(a, b) (a) = ((1ll * (a) * (b)) % M)
#define ad(a, b) ((0ll + (a) + (b)) % M)
#define tad(a, b) (a) = ((0ll + (a) + (b)) % M)
#define mi(a, b) ((0ll + M + (a) - (b)) % M)
#define tmi(a, b) (a) = ((0ll + M + (a) - (b)) % M)
#define tmin(a, b) (a) = min((a), (b))
#define tmax(a, b) (a) = max((a), (b))
#define iter(a) (a).begin(), (a).end()
#define riter(a) (a).rbegin(), (a).rend()
#define init(a, b) memset((a), (b), sizeof(a))
#define cpy(a, b) memcpy((a), (b), sizeof(a))
#define uni(a) a.resize(unique(iter(a)) - a.begin())
#define pb emplace_back
#define mpr make_pair
#define ls(i) ((i) << 1)
#define rs(i) ((i) << 1 | 1)
#define INF 0x3f3f3f3f
#define NIF 0xc0c0c0c0
#define eps 1e-9
#define F first
#define S second
#define AC cin.tie(0)->sync_with_stdio(0)
using namespace std;
typedef long long llt;
typedef pair<int, int> pii;
typedef pair<double, double> pdd;
typedef pair<llt, llt> pll;
typedef complex<double> cd;
// const int M = 998244353;

// random_device rm;
// mt19937 rg(rm());
// default_random_engine rg(rm());
// uniform_int_distribution<int> rd(INT_MIN, INT_MAX);
// uniform_real_distribution<double> rd(0, M_PI);

void db() { cerr << "\n"; }
template <class T, class... U>
void db(T a, U... b) { cerr << a << " ", db(b...); }

inline char gc()
{
    const static int SZ = 1 << 16;
    static char buf[SZ], *p1, *p2;
    if (p1 == p2 && (p2 = buf + fread(p1 = buf, 1, SZ, stdin), p1 == p2))
        return -1;
    return *p1++;
}
void rd() {}
template <typename T, typename... U>
void rd(T &x, U &...y)
{
    x = 0;
    bool f = 0;
    char c = gc();
    while (!isdigit(c))
        f ^= !(c ^ 45), c = gc();
    while (isdigit(c))
        x = (x << 1) + (x << 3) + (c ^ 48), c = gc();
    f && (x = -x), rd(y...);
}

template <typename T>
void prt(T x)
{
    if (x < 0)
        putchar('-'), x = -x;
    if (x > 9)
        prt(x / 10);
    putchar((x % 10) ^ 48);
}

vector<vector<int>> gd, v[3][3][3][3], v1[3][3], v2[3][3], vr;
#define p1 [x - 1][y]
#define p2 [x][y - 1]
#define p3 [x][y + 1]
#define p4 [x + 1][y]
#define c1 x != l
#define c2 y != u
#define c3 y != d
#define c4 x != r
int gv(int x, int y, int l, int r, int u, int d)
{
    int mn = INF, cr = gd[x][y], res = 0;
    if (c1 && gd p1 > cr && gd p1 < mn)
        mn = gd p1, res = 1;
    if (c2 && gd p2 > cr && gd p2 < mn)
        mn = gd p2, res = 2;
    if (c3 && gd p3 > cr && gd p3 < mn)
        mn = gd p3, res = 3;
    if (c4 && gd p4 > cr && gd p4 < mn)
        mn = gd p4, res = 4;
    return res;
}
#define pp l, r, u, d
int slv(int x, int y, int l, int r, int u, int d)
{
    if (c1 && gv(x - 1, y, pp) == 4)
        return 0;
    if (c2 && gv(x, y - 1, pp) == 3)
        return 0;
    if (c3 && gv(x, y + 1, pp) == 2)
        return 0;
    if (c4 && gv(x + 1, y, pp) == 1)
        return 0;
    return 1;
}
#define vt(i, j) vector<vector<int>>(i, vector<int>(j))
int cnt[50004];
signed main()
{
    int n, m;
    rd(n, m);
    if (n > m)
    {
        swap(n, m);
        gd = vt(n, m);
        for (int i = 0; i < m; i++)
            for (int j = 0; j < n; j++)
                rd(gd[j][i]);
    }
    else
    {
        gd = vt(n, m);
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
                rd(gd[i][j]);
    }
    for (int l = 0; l < 3; l++)
    {
        for (int r = 0; r < 3; r++)
        {
            for (int u = 0; u < 3; u++)
            {
                for (int d = 0; d < 3; d++)
                {
                    v[l][r][u][d] = vt(n, m);
                    for (int i = 0; i < n; i++)
                        for (int j = 0; j < m; j++)
                            v[l][r][u][d][i][j] =
                                slv(i, j, max(0, i - l), min(n - 1, i + r), max(0, j - u), min(m - 1, j + d));
                }
            }
        }
    }
    for (int l = 0; l < 3; l++)
    {
        for (int r = 0; r < 3; r++)
        {
            v1[l][r] = v2[l][r] = vt(n, m);
            for (int i = 0; i < n; i++)
            {
                v1[l][r][i][0] = v[l][r][2][2][i][0];
                for (int j = 1; j < m; j++)
                    v1[l][r][i][j] = v[l][r][2][2][i][j] + v1[l][r][i][j - 1];
            }
            for (int j = 0; j < m; j++)
            {
                v2[l][r][0][j] = v[2][2][l][r][0][j];
                for (int i = 1; i < n; i++)
                    v2[l][r][i][j] = v[2][2][l][r][i][j] + v2[l][r][i - 1][j];
            }
        }
    }
    vr = vt(n, m);
    for (int i = 0; i < m; i++)
        vr[0][i] = v[2][2][2][2][0][i];
    for (int i = 1; i < n; i++)
    {
        vr[i][0] = v[2][2][2][2][0][i];
        for (int j = 1; j < m; j++)
        {
            vr[i][j] = vr[i - 1][j] + vr[i][j - 1] -
                       vr[i - 1][j - 1] + v[2][2][2][2][i][j];
        }
    }
    llt ans = 0;
    for (int l = 0; l < n; l++)
    {
        for (int r = 0; r < n; r++)
        {
            if (r - l < 4)
            {
                for (int i = 3; i < m; i++)
                {
                    int tp = 1;
                    for (int a = l; a <= r; a++)
                    {
                        int x = min(2, a - l), y = min(2, r - a);
                        tp += v1[x][y][a][i - 2] - v[x][y][0][2][a][i - 3] - v[x][y][1][2][a][i - 2];
                    }
                    if (tp >= 0)
                        cnt[tp]++;
                    tp = 0;
                    for (int a = l; a <= r; a++)
                    {
                        int x = min(2, a - l), y = min(2, r - a);
                        tp += v1[x][y][a][i - 2] + v[x][y][2][1][a][i - 1] + v[x][y][2][0][a][i];
                    }
                    ans += cnt[tp];
                }
                for (int i = 3; i < m; i++)
                {
                    int tp = 1;
                    for (int a = l; a <= r; a++)
                    {
                        int x = min(2, a - l), y = min(2, r - a);
                        tp += v1[x][y][a][i - 2] - v[x][y][0][2][a][i - 3] - v[x][y][1][2][a][i - 2];
                    }
                    if (tp >= 0)
                        cnt[tp]--;
                }
                for (int i = 0; i < m; i++)
                {
                    for (int j = i; j < min(i + 3, m); j++)
                    {
                        int tp = 0;
                        for (int a = l; a <= r; a++)
                            for (int b = i; b <= j; b++)
                                tp += v[min(2, a - l)][min(2, r - a)][min(2, b - i)][min(2, j - b)][a][b];
                        if (tp == 1)
                            ans++;
                    }
                }
            }
            else
            {
                for (int i = 0; i < m; i++)
                {
                    for (int j = i; j < min(i + 3, m); j++)
                    {
                        int tp = 0;
                        for (int b = i; b <= j; b++)
                        {
                            int x = min(b - i, 2), y = min(j - b, 2);
                            tp += v[0][2][x][y][l][b];
                            tp += v[1][2][x][y][l + 1][b];
                            tp += v[2][0][x][y][r][b];
                            tp += v[2][1][x][y][r - 1][b];
                            tp += v2[x][y][r - 2][b] - v2[x][y][l + 1][b];
                        }
                        if (tp == 1)
                            ans++;
                    }
                }
                for (int i = 3; i < m; i++)
                {
                    int tp = 1;
                    tp += v1[0][2][l][i - 2] - v[0][2][0][2][l][i - 3] - v[0][2][1][2][l][i - 2];
                    tp += v1[1][2][l + 1][i - 2] - v[1][2][0][2][l + 1][i - 3] - v[1][2][1][2][l + 1][i - 2];
                    tp += v1[2][0][r][i - 2] - v[2][0][0][2][r][i - 3] - v[2][0][1][2][r][i - 2];
                    tp += v1[2][1][r - 1][i - 2] - v[2][1][0][2][r - 1][i - 3] - v[2][1][1][2][r - 1][i - 2];
                    tp += vr[r - 2][i - 2] - vr[l + 1][i - 2] -
                          v2[0][2][r - 2][i - 3] + v2[0][2][l + 1][i - 3] -
                          v2[1][2][r - 2][i - 2] + v2[1][2][l + 1][i - 2];
                    if (tp >= 0)
                        cnt[tp]++;
                    tp = 0;
                    tp += v1[0][2][l][i - 2] + v[0][2][2][0][l][i] + v[0][2][2][1][l][i - 1];
                    tp += v1[1][2][l + 1][i - 2] + v[1][2][2][0][l + 1][i] + v[1][2][2][1][l + 1][i - 1];
                    tp += v1[2][0][r][i - 2] + v[2][0][2][0][r][i] + v[2][0][2][1][r][i - 1];
                    tp += v1[2][1][r - 1][i - 2] + v[2][1][2][0][r - 1][i] + v[2][1][2][1][r - 1][i - 1];
                    tp += vr[r - 2][i - 2] - vr[l + 1][i - 2] +
                          v2[2][0][r - 2][i] - v2[2][0][l + 1][i] +
                          v2[2][1][r - 2][i - 1] - v2[2][1][l + 1][i - 1];
                    ans += cnt[tp];
                }
                for (int i = 3; i < m; i++)
                {
                    int tp = 1;
                    tp += v1[0][2][l][i - 2] - v[0][2][0][2][l][i - 3] - v[0][2][1][2][l][i - 2];
                    tp += v1[1][2][l + 1][i - 2] - v[1][2][0][2][l + 1][i - 3] - v[1][2][1][2][l + 1][i - 2];
                    tp += v1[2][0][r][i - 2] - v[2][0][0][2][r][i - 3] - v[2][0][1][2][r][i - 2];
                    tp += v1[2][1][r - 1][i - 2] - v[2][1][0][2][r - 1][i - 3] - v[2][1][1][2][r - 1][i - 2];
                    tp += vr[r - 2][i - 2] - vr[l + 1][i - 2] -
                          v2[0][2][r - 2][i - 3] + v2[0][2][l + 1][i - 3] -
                          v2[1][2][r - 2][i - 2] + v2[1][2][l + 1][i - 2];
                    if (tp >= 0)
                        cnt[tp]--;
                }
            }
        }
    }
    prt(ans), putchar('\n');
}
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 47 ms 20372 KB Output is correct
3 Correct 47 ms 20116 KB Output is correct
4 Correct 48 ms 20372 KB Output is correct
5 Correct 56 ms 20372 KB Output is correct
6 Correct 60 ms 20384 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 344 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 344 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 344 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 344 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 2 ms 860 KB Output is correct
9 Correct 6 ms 1116 KB Output is correct
10 Correct 4 ms 1112 KB Output is correct
11 Correct 2 ms 860 KB Output is correct
12 Correct 2 ms 860 KB Output is correct
13 Correct 4 ms 1116 KB Output is correct
14 Correct 3 ms 776 KB Output is correct
15 Correct 7 ms 1116 KB Output is correct
16 Correct 6 ms 1112 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 344 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 344 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 2 ms 860 KB Output is correct
9 Correct 6 ms 1116 KB Output is correct
10 Correct 4 ms 1112 KB Output is correct
11 Correct 2 ms 860 KB Output is correct
12 Correct 2 ms 860 KB Output is correct
13 Correct 4 ms 1116 KB Output is correct
14 Correct 3 ms 776 KB Output is correct
15 Correct 7 ms 1116 KB Output is correct
16 Correct 6 ms 1112 KB Output is correct
17 Correct 8 ms 3164 KB Output is correct
18 Correct 29 ms 3456 KB Output is correct
19 Correct 21 ms 3160 KB Output is correct
20 Correct 25 ms 3420 KB Output is correct
21 Correct 24 ms 3416 KB Output is correct
22 Correct 26 ms 3420 KB Output is correct
23 Correct 26 ms 3160 KB Output is correct
24 Correct 25 ms 3416 KB Output is correct
25 Correct 34 ms 3416 KB Output is correct
26 Correct 30 ms 3520 KB Output is correct
27 Correct 33 ms 3440 KB Output is correct
28 Correct 32 ms 3416 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 344 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 344 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 2 ms 860 KB Output is correct
9 Correct 6 ms 1116 KB Output is correct
10 Correct 4 ms 1112 KB Output is correct
11 Correct 2 ms 860 KB Output is correct
12 Correct 2 ms 860 KB Output is correct
13 Correct 4 ms 1116 KB Output is correct
14 Correct 3 ms 776 KB Output is correct
15 Correct 7 ms 1116 KB Output is correct
16 Correct 6 ms 1112 KB Output is correct
17 Correct 8 ms 3164 KB Output is correct
18 Correct 29 ms 3456 KB Output is correct
19 Correct 21 ms 3160 KB Output is correct
20 Correct 25 ms 3420 KB Output is correct
21 Correct 24 ms 3416 KB Output is correct
22 Correct 26 ms 3420 KB Output is correct
23 Correct 26 ms 3160 KB Output is correct
24 Correct 25 ms 3416 KB Output is correct
25 Correct 34 ms 3416 KB Output is correct
26 Correct 30 ms 3520 KB Output is correct
27 Correct 33 ms 3440 KB Output is correct
28 Correct 32 ms 3416 KB Output is correct
29 Correct 39 ms 20364 KB Output is correct
30 Correct 211 ms 20644 KB Output is correct
31 Correct 448 ms 20988 KB Output is correct
32 Correct 55 ms 20308 KB Output is correct
33 Correct 412 ms 20968 KB Output is correct
34 Correct 388 ms 21076 KB Output is correct
35 Correct 181 ms 13908 KB Output is correct
36 Correct 260 ms 20508 KB Output is correct
37 Correct 422 ms 20844 KB Output is correct
38 Correct 433 ms 20844 KB Output is correct
39 Correct 453 ms 20844 KB Output is correct
40 Correct 433 ms 20924 KB Output is correct
41 Correct 411 ms 20844 KB Output is correct
42 Correct 461 ms 21072 KB Output is correct
43 Correct 427 ms 20848 KB Output is correct
44 Correct 437 ms 20844 KB Output is correct