답안 #907035

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
907035 2024-01-15T06:15:04 Z gaga999 Sandcastle 2 (JOI22_ho_t5) C++17
80 / 100
5000 ms 21136 KB
#include <cstdio>
#include <stdio.h>
#include <iostream>
#include <math.h>
#include <vector>
#include <queue>
#include <stack>
#include <deque>
#include <algorithm>
#include <utility>
#include <set>
#include <map>
#include <stdlib.h>
#include <cstring>
#include <string.h>
#include <string>
#include <sstream>
#include <assert.h>
#include <climits>
#include <sstream>
#include <numeric>
#include <time.h>
#include <limits.h>
#include <list>
#include <bitset>
#include <unordered_map>
#include <unordered_set>
#include <random>
#include <iomanip>
#include <complex>
#include <chrono>
#include <fstream>
#include <functional>
#include <unistd.h>
// #pragma GCC optimize("Ofast,no-stack-protector")
// #pragma GCC optimize("O3,unroll-loops")
// #pragma GCC target("avx,avx2,bmi,bmi2,lzcnt,popcnt")
#define lowbit(x) ((x) & -(x))
#define ml(a, b) ((1ll * (a) * (b)) % M)
#define tml(a, b) (a) = ((1ll * (a) * (b)) % M)
#define ad(a, b) ((0ll + (a) + (b)) % M)
#define tad(a, b) (a) = ((0ll + (a) + (b)) % M)
#define mi(a, b) ((0ll + M + (a) - (b)) % M)
#define tmi(a, b) (a) = ((0ll + M + (a) - (b)) % M)
#define tmin(a, b) (a) = min((a), (b))
#define tmax(a, b) (a) = max((a), (b))
#define iter(a) (a).begin(), (a).end()
#define riter(a) (a).rbegin(), (a).rend()
#define init(a, b) memset((a), (b), sizeof(a))
#define cpy(a, b) memcpy((a), (b), sizeof(a))
#define uni(a) a.resize(unique(iter(a)) - a.begin())
#define pb emplace_back
#define mpr make_pair
#define ls(i) ((i) << 1)
#define rs(i) ((i) << 1 | 1)
#define INF 0x3f3f3f3f
#define NIF 0xc0c0c0c0
#define eps 1e-9
#define F first
#define S second
#define AC cin.tie(0)->sync_with_stdio(0)
using namespace std;
typedef long long llt;
typedef pair<int, int> pii;
typedef pair<double, double> pdd;
typedef pair<llt, llt> pll;
typedef complex<double> cd;
// const int M = 998244353;

// random_device rm;
// mt19937 rg(rm());
// default_random_engine rg(rm());
// uniform_int_distribution<int> rd(INT_MIN, INT_MAX);
// uniform_real_distribution<double> rd(0, M_PI);

void db() { cerr << "\n"; }
template <class T, class... U>
void db(T a, U... b) { cerr << a << " ", db(b...); }

inline char gc()
{
    const static int SZ = 1 << 16;
    static char buf[SZ], *p1, *p2;
    if (p1 == p2 && (p2 = buf + fread(p1 = buf, 1, SZ, stdin), p1 == p2))
        return -1;
    return *p1++;
}
void rd() {}
template <typename T, typename... U>
void rd(T &x, U &...y)
{
    x = 0;
    bool f = 0;
    char c = gc();
    while (!isdigit(c))
        f ^= !(c ^ 45), c = gc();
    while (isdigit(c))
        x = (x << 1) + (x << 3) + (c ^ 48), c = gc();
    f && (x = -x), rd(y...);
}

template <typename T>
void prt(T x)
{
    if (x < 0)
        putchar('-'), x = -x;
    if (x > 9)
        prt(x / 10);
    putchar((x % 10) ^ 48);
}

vector<vector<int>> gd, v[3][3][3][3], v1[3][3], v2[3][3], vr;
#define p1 [x - 1][y]
#define p2 [x][y - 1]
#define p3 [x][y + 1]
#define p4 [x + 1][y]
#define c1 x != l
#define c2 y != u
#define c3 y != d
#define c4 x != r
int gv(int x, int y, int l, int r, int u, int d)
{
    int mn = INF, cr = gd[x][y], res = 0;
    if (c1 && gd p1 > cr && gd p1 < mn)
        mn = gd p1, res = 1;
    if (c2 && gd p2 > cr && gd p2 < mn)
        mn = gd p2, res = 2;
    if (c3 && gd p3 > cr && gd p3 < mn)
        mn = gd p3, res = 3;
    if (c4 && gd p4 > cr && gd p4 < mn)
        mn = gd p4, res = 4;
    return res;
}
#define pp l, r, u, d
int slv(int x, int y, int l, int r, int u, int d)
{
    int res = 0;
    if (c1 && gv(x - 1, y, pp) == 4)
        res++;
    if (c2 && gv(x, y - 1, pp) == 3)
        res++;
    if (c3 && gv(x, y + 1, pp) == 2)
        res++;
    if (c4 && gv(x + 1, y, pp) == 1)
        res++;
    return !res;
}
inline int grc(int l, int r, int i, int j)
{
    return vr[l][i] + vr[r][j] - vr[l][j] - vr[r][i];
}
#define vt(i, j) vector<vector<int>>(i, vector<int>(j))
int cnt[50004];
signed main()
{
    int n, m;
    rd(n, m);
    if (n > m)
    {
        swap(n, m);
        gd = vt(n, m);
        for (int i = 0; i < m; i++)
            for (int j = 0; j < n; j++)
                rd(gd[j][i]);
    }
    else
    {
        gd = vt(n, m);
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
                rd(gd[i][j]);
    }
    for (int l = 0; l < 3; l++)
    {
        for (int r = 0; r < 3; r++)
        {
            for (int u = 0; u < 3; u++)
            {
                for (int d = 0; d < 3; d++)
                {
                    v[l][r][u][d] = vt(n, m);
                    for (int i = 0; i < n; i++)
                        for (int j = 0; j < m; j++)
                            v[l][r][u][d][i][j] =
                                slv(i, j, max(0, i - l), min(n - 1, i + r), max(0, j - u), min(m - 1, j + d));
                }
            }
        }
    }
    for (int l = 0; l < 3; l++)
    {
        for (int r = 0; r < 3; r++)
        {
            v1[l][r] = v2[l][r] = vt(n, m);
            for (int i = 0; i < n; i++)
            {
                v1[l][r][i][0] = v[l][r][2][2][i][0];
                for (int j = 1; j < m; j++)
                    v1[l][r][i][j] = v[l][r][2][2][i][j] + v1[l][r][i][j - 1];
            }
            for (int j = 0; j < m; j++)
            {
                v2[l][r][0][j] = v[2][2][l][r][0][j];
                for (int i = 1; i < n; i++)
                    v2[l][r][i][j] = v[2][2][l][r][i][j] + v2[l][r][i - 1][j];
            }
        }
    }
    vr = vt(n, m);
    for (int i = 0; i < m; i++)
        vr[0][i] = v[2][2][2][2][0][i];
    for (int i = 1; i < n; i++)
    {
        vr[i][0] = v[2][2][2][2][0][i];
        for (int j = 1; j < m; j++)
        {
            vr[i][j] = vr[i - 1][j] + vr[i][j - 1] -
                       vr[i - 1][j - 1] + v[2][2][2][2][i][j];
        }
    }
    llt ans = 0;
    for (int l = 0; l < n; l++)
    {
        for (int r = 0; r < n; r++)
        {
            if (r - l < 4)
            {
                for (int i = 3; i < m; i++)
                {
                    int tp = 1;
                    for (int a = l; a <= r; a++)
                    {
                        int x = min(2, a - l), y = min(2, r - a);
                        tp += v1[x][y][a][i - 2] - v[x][y][0][2][a][i - 3] - v[x][y][1][2][a][i - 2];
                    }
                    if (tp >= 0)
                        cnt[tp]++;
                    tp = 0;
                    for (int a = l; a <= r; a++)
                    {
                        int x = min(2, a - l), y = min(2, r - a);
                        tp += v1[x][y][a][i - 2] + v[x][y][2][1][a][i - 1] + v[x][y][2][0][a][i];
                    }
                    ans += cnt[tp];
                }
                for (int i = 3; i < m; i++)
                {
                    int tp = 1;
                    for (int a = l; a <= r; a++)
                    {
                        int x = min(2, a - l), y = min(2, r - a);
                        tp += v1[x][y][a][i - 2] - v[x][y][0][2][a][i - 3] - v[x][y][1][2][a][i - 2];
                    }
                    if (tp >= 0)
                        cnt[tp]--;
                }
                for (int i = 0; i < m; i++)
                {
                    for (int j = i; j < min(i + 3, m); j++)
                    {
                        int tp = 0;
                        for (int a = l; a <= r; a++)
                            for (int b = i; b <= j; b++)
                                tp += v[min(2, a - l)][min(2, r - a)][min(2, b - i)][min(2, j - b)][a][b];
                        if (tp == 1)
                            ans++;
                    }
                }
            }
            else
            {
                for (int i = 0; i < m; i++)
                {
                    for (int j = i; j < m; j++)
                    {
                        if (j - i < 4)
                        {
                            int tp = 0;
                            for (int b = i; b <= j; b++)
                            {
                                int x = min(b - i, 2), y = min(j - b, 2);
                                tp += v[0][2][x][y][l][b];
                                tp += v[1][2][x][y][l + 1][b];
                                tp += v[2][0][x][y][r][b];
                                tp += v[2][1][x][y][r - 1][b];
                                tp += v2[x][y][r - 2][b] - v2[x][y][l + 1][b];
                            }
                            if (tp == 1)
                                ans++;
                        }
                        else
                        {
                            int tp = 0;
                            tp += v[0][2][0][2][l][i];
                            tp += v[1][2][0][2][l + 1][i];
                            tp += v[0][2][1][2][l][i + 1];
                            tp += v[1][2][1][2][l + 1][i + 1];
                            //-0-------------
                            tp += v[2][0][2][0][r][j];
                            tp += v[2][1][2][0][r - 1][j];
                            tp += v[2][0][2][1][r][j - 1];
                            tp += v[2][1][2][1][r - 1][j - 1];
                            //-0-------------
                            tp += v[2][0][0][2][r][i];
                            tp += v[2][0][1][2][r][i + 1];
                            tp += v[2][1][0][2][r - 1][i];
                            tp += v[2][1][1][2][r - 1][i + 1];
                            //-----------------
                            tp += v[0][2][2][0][l][j];
                            tp += v[1][2][2][0][l + 1][j];
                            tp += v[0][2][2][1][l][j - 1];
                            tp += v[1][2][2][1][l + 1][j - 1];
                            //---------------------
                            tp += v2[0][2][r - 2][i] - v2[0][2][l + 1][i];
                            tp += v2[1][2][r - 2][i + 1] - v2[1][2][l + 1][i + 1];
                            tp += v2[2][0][r - 2][j] - v2[2][0][l + 1][j];
                            tp += v2[2][1][r - 2][j - 1] - v2[2][1][l + 1][j - 1];
                            //---------------
                            tp += v1[0][2][l][j - 2] - v1[0][2][l][i + 1];
                            tp += v1[1][2][l + 1][j - 2] - v1[1][2][l + 1][i + 1];
                            tp += v1[2][0][r][j - 2] - v1[2][0][r][i + 1];
                            tp += v1[2][1][r - 1][j - 2] - v1[2][1][r - 1][i + 1];
                            //--------------
                            tp += grc(l + 1, r - 2, i + 1, j - 2);
                            if (tp == 1)
                                ans++;
                        }
                    }
                }
            }
        }
    }
    prt(ans), putchar('\n');
}
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 51 ms 20252 KB Output is correct
3 Correct 54 ms 20436 KB Output is correct
4 Correct 58 ms 20632 KB Output is correct
5 Correct 52 ms 20740 KB Output is correct
6 Correct 72 ms 21136 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 2 ms 860 KB Output is correct
9 Correct 15 ms 1368 KB Output is correct
10 Correct 10 ms 1116 KB Output is correct
11 Correct 2 ms 860 KB Output is correct
12 Correct 2 ms 860 KB Output is correct
13 Correct 12 ms 916 KB Output is correct
14 Correct 7 ms 860 KB Output is correct
15 Correct 12 ms 1144 KB Output is correct
16 Correct 14 ms 1112 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 2 ms 860 KB Output is correct
9 Correct 15 ms 1368 KB Output is correct
10 Correct 10 ms 1116 KB Output is correct
11 Correct 2 ms 860 KB Output is correct
12 Correct 2 ms 860 KB Output is correct
13 Correct 12 ms 916 KB Output is correct
14 Correct 7 ms 860 KB Output is correct
15 Correct 12 ms 1144 KB Output is correct
16 Correct 14 ms 1112 KB Output is correct
17 Correct 7 ms 3412 KB Output is correct
18 Correct 197 ms 3392 KB Output is correct
19 Correct 127 ms 3300 KB Output is correct
20 Correct 190 ms 3420 KB Output is correct
21 Correct 189 ms 3420 KB Output is correct
22 Correct 194 ms 3664 KB Output is correct
23 Correct 179 ms 3164 KB Output is correct
24 Correct 148 ms 3148 KB Output is correct
25 Correct 207 ms 3488 KB Output is correct
26 Correct 201 ms 3536 KB Output is correct
27 Correct 204 ms 3488 KB Output is correct
28 Correct 208 ms 3532 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 2 ms 860 KB Output is correct
9 Correct 15 ms 1368 KB Output is correct
10 Correct 10 ms 1116 KB Output is correct
11 Correct 2 ms 860 KB Output is correct
12 Correct 2 ms 860 KB Output is correct
13 Correct 12 ms 916 KB Output is correct
14 Correct 7 ms 860 KB Output is correct
15 Correct 12 ms 1144 KB Output is correct
16 Correct 14 ms 1112 KB Output is correct
17 Correct 7 ms 3412 KB Output is correct
18 Correct 197 ms 3392 KB Output is correct
19 Correct 127 ms 3300 KB Output is correct
20 Correct 190 ms 3420 KB Output is correct
21 Correct 189 ms 3420 KB Output is correct
22 Correct 194 ms 3664 KB Output is correct
23 Correct 179 ms 3164 KB Output is correct
24 Correct 148 ms 3148 KB Output is correct
25 Correct 207 ms 3488 KB Output is correct
26 Correct 201 ms 3536 KB Output is correct
27 Correct 204 ms 3488 KB Output is correct
28 Correct 208 ms 3532 KB Output is correct
29 Correct 54 ms 20620 KB Output is correct
30 Execution timed out 5026 ms 20820 KB Time limit exceeded
31 Halted 0 ms 0 KB -