Submission #906700

# Submission time Handle Problem Language Result Execution time Memory
906700 2024-01-14T18:54:11 Z vjudge1 Catfish Farm (IOI22_fish) C++17
44 / 100
346 ms 17712 KB
#include "fish.h"

#pragma GCC target ("avx2")
#pragma GCC optimize ("O3")
#pragma GCC optimize ("unroll-loops")

#include<bits/stdc++.h>
#include<math.h>
using namespace std;

typedef long long int ll;
typedef long double ld;
typedef pair<ll, ll> pl;
typedef vector<ll> vl;
#define FD(i, r, l) for(ll i = r; i > (l); --i)

#define K first
#define V second
#define G(x) ll x; cin >> x;
#define GD(x) ld x; cin >> x;
#define GS(s) string s; cin >> s;
#define EX(x) { cout << x << '\n'; exit(0); }
#define A(a) (a).begin(), (a).end()
#define F(i, l, r) for (ll i = l; i < (r); ++i)

#define NN 310

ll grid[NN][NN];
ll n;

ll dp1[NN][NN];
ll noreq(ll, ll); // no request fishies, so len == prev wall. 

ll dp2[NN][NN];
ll req(ll, ll); 

// previous column did NOT request any right fishies here
// so we simply have a free wall to attach to 
ll noreq(ll i, ll len) {
    // assert(len == 0 or len == n);
    if (i == n) return 0;
    auto &DP = dp1[i][len];
    if (!~DP) {
        DP = noreq(i+1, n); // no restrictions so build big wall.

        F(nlen, 0, n+1) DP = max(DP, req(i, nlen)); // basically can set up any wall here before taking right fishes

        ll lsum = 0;
        F(j, 0, len) {
            lsum += grid[i][j];
        }
        DP = max(DP, lsum + noreq(i+1, 0));
        {
            ll tsum = lsum;
            F(j, 0, len) {
                tsum -= grid[i][j];
                DP = max(DP, tsum + noreq(i+1, j+1));
            }
        }


        F(covering, len, n) {
            // not lsum naymore jsut cum sum
            lsum += grid[i][covering];
            DP = max(DP, lsum + req(i+1, covering + 1));
        }

    }   
    return DP;   
}


// previous column requested right fishes here;
// so len == min bound on wall (we cannot take anything below len)

ll req(ll i, ll len) {
    if (i == n) return len == 0 ? 0 : -9e18; // i should need 0 fishes here
    auto &DP = dp2[i][len];
    if (!~DP) {
        // note that we cannot request any left fishes here.
        DP = noreq(i+1, n);  // if we don't request ANY fish here, just go up to max 

        ll sm = 0;
        F(covering, len, n) {
            sm += grid[i][covering];
            DP = max(DP, sm + req(i+1, covering + 1));
        }
    }   
    return DP;
}

long long max_weights(int N, int M, std::vector<int> X, std::vector<int> Y,
                      std::vector<int> W) {
    ll rans;

    if (N <= 300) {
        memset(dp1, -1, sizeof dp1);
        memset(dp2, -1, sizeof dp2);
        
        n = N;
        memset(grid, 0, sizeof grid);
        F(i, 0, M) grid[X[i]][Y[i]] = W[i];
        
        rans = noreq(0, 0);          
    }
    constexpr ll DEBUG = 0;
    if (N <= 300 and !DEBUG) return rans;

    bool case1 = 1;
    bool case2 = 1;
    bool case3 = 1;
    F(i, 0, M) case1 &= X[i]%2 == 0;
    F(i, 0, M) case2 &= X[i] <= 1;
    F(i, 0, M) case3 &= Y[i] == 0;
    
    if (case1) {
        return accumulate(A(W), 0ll);
    } else if (case2) {
        ll c[2] = {};
        map<pl, ll> points;
        F(i, 0, M) {
            c[X[i]] += W[i];
            points[{X[i], Y[i]}] = W[i];
        }
        
        if (N == 2) {
            return max(c[0], c[1]);
        }
        ll tans = max(c[0], c[1]);
        ll tsum = c[1];
        F(i, 0, N) {
            tsum -= points[{1, i}];
            tsum += points[{0, i}];
            tans = max(tans, tsum);
        }

        return tans;
    } else if (case3) {
        vl grid(n);
        F(i, 0, M) grid[X[i]] = W[i];
        vector<vl> dp(n+10, vl(3, -1));
        auto rec = [&](auto &&self, ll i, ll f) -> ll {
            if (i > n) return -1e18;
            if (i >= n) return 0;
            auto &DP = dp[i][f];
            if (!~DP) {
                DP = self(self, i+1, 1);
                if (f) DP = max(DP, grid[i] + self(self, i+1, 0));
                DP = max(DP, grid[i] + self(self, i+2, 1));
            }
            return DP;
        };
        // cout << rec(rec, 0, 0) << ' ' << rans << endl;
        // assert(rec(rec, 0, 0) == rans);
        return rec(rec, 0, 0);
    }

    return -1;
}
# Verdict Execution time Memory Grader output
1 Correct 17 ms 2128 KB Output is correct
2 Correct 22 ms 2648 KB Output is correct
3 Correct 1 ms 344 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 67 ms 7252 KB Output is correct
6 Correct 67 ms 7348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2648 KB Output is correct
2 Correct 115 ms 15700 KB Output is correct
3 Correct 156 ms 17712 KB Output is correct
4 Correct 17 ms 2140 KB Output is correct
5 Correct 22 ms 2656 KB Output is correct
6 Correct 1 ms 2652 KB Output is correct
7 Correct 1 ms 2652 KB Output is correct
8 Correct 1 ms 2652 KB Output is correct
9 Correct 1 ms 2652 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 74 ms 13396 KB Output is correct
13 Correct 79 ms 15184 KB Output is correct
14 Correct 71 ms 13484 KB Output is correct
15 Correct 92 ms 15096 KB Output is correct
16 Correct 64 ms 13508 KB Output is correct
17 Correct 77 ms 14864 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Runtime error 1 ms 348 KB Execution killed with signal 11
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2648 KB Output is correct
2 Correct 1 ms 2652 KB Output is correct
3 Correct 1 ms 2496 KB Output is correct
4 Correct 1 ms 2652 KB Output is correct
5 Correct 1 ms 2652 KB Output is correct
6 Correct 1 ms 2652 KB Output is correct
7 Correct 1 ms 2652 KB Output is correct
8 Correct 1 ms 2652 KB Output is correct
9 Correct 42 ms 2652 KB Output is correct
10 Correct 329 ms 2896 KB Output is correct
11 Correct 42 ms 2732 KB Output is correct
12 Correct 329 ms 2792 KB Output is correct
13 Correct 8 ms 2908 KB Output is correct
14 Correct 326 ms 2788 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2648 KB Output is correct
2 Correct 1 ms 2652 KB Output is correct
3 Correct 1 ms 2496 KB Output is correct
4 Correct 1 ms 2652 KB Output is correct
5 Correct 1 ms 2652 KB Output is correct
6 Correct 1 ms 2652 KB Output is correct
7 Correct 1 ms 2652 KB Output is correct
8 Correct 1 ms 2652 KB Output is correct
9 Correct 42 ms 2652 KB Output is correct
10 Correct 329 ms 2896 KB Output is correct
11 Correct 42 ms 2732 KB Output is correct
12 Correct 329 ms 2792 KB Output is correct
13 Correct 8 ms 2908 KB Output is correct
14 Correct 326 ms 2788 KB Output is correct
15 Correct 327 ms 2652 KB Output is correct
16 Correct 7 ms 2652 KB Output is correct
17 Correct 337 ms 3676 KB Output is correct
18 Correct 342 ms 3676 KB Output is correct
19 Correct 334 ms 3676 KB Output is correct
20 Correct 334 ms 3672 KB Output is correct
21 Correct 338 ms 3676 KB Output is correct
22 Correct 346 ms 4900 KB Output is correct
23 Correct 331 ms 2976 KB Output is correct
24 Correct 330 ms 3476 KB Output is correct
25 Correct 334 ms 2796 KB Output is correct
26 Correct 326 ms 2960 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2648 KB Output is correct
2 Correct 1 ms 2652 KB Output is correct
3 Correct 1 ms 2496 KB Output is correct
4 Correct 1 ms 2652 KB Output is correct
5 Correct 1 ms 2652 KB Output is correct
6 Correct 1 ms 2652 KB Output is correct
7 Correct 1 ms 2652 KB Output is correct
8 Correct 1 ms 2652 KB Output is correct
9 Correct 42 ms 2652 KB Output is correct
10 Correct 329 ms 2896 KB Output is correct
11 Correct 42 ms 2732 KB Output is correct
12 Correct 329 ms 2792 KB Output is correct
13 Correct 8 ms 2908 KB Output is correct
14 Correct 326 ms 2788 KB Output is correct
15 Correct 327 ms 2652 KB Output is correct
16 Correct 7 ms 2652 KB Output is correct
17 Correct 337 ms 3676 KB Output is correct
18 Correct 342 ms 3676 KB Output is correct
19 Correct 334 ms 3676 KB Output is correct
20 Correct 334 ms 3672 KB Output is correct
21 Correct 338 ms 3676 KB Output is correct
22 Correct 346 ms 4900 KB Output is correct
23 Correct 331 ms 2976 KB Output is correct
24 Correct 330 ms 3476 KB Output is correct
25 Correct 334 ms 2796 KB Output is correct
26 Correct 326 ms 2960 KB Output is correct
27 Incorrect 1 ms 348 KB 1st lines differ - on the 1st token, expected: '2999', found: '-1'
28 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Runtime error 1 ms 348 KB Execution killed with signal 11
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 17 ms 2128 KB Output is correct
2 Correct 22 ms 2648 KB Output is correct
3 Correct 1 ms 344 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 67 ms 7252 KB Output is correct
6 Correct 67 ms 7348 KB Output is correct
7 Correct 1 ms 2648 KB Output is correct
8 Correct 115 ms 15700 KB Output is correct
9 Correct 156 ms 17712 KB Output is correct
10 Correct 17 ms 2140 KB Output is correct
11 Correct 22 ms 2656 KB Output is correct
12 Correct 1 ms 2652 KB Output is correct
13 Correct 1 ms 2652 KB Output is correct
14 Correct 1 ms 2652 KB Output is correct
15 Correct 1 ms 2652 KB Output is correct
16 Correct 1 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 74 ms 13396 KB Output is correct
19 Correct 79 ms 15184 KB Output is correct
20 Correct 71 ms 13484 KB Output is correct
21 Correct 92 ms 15096 KB Output is correct
22 Correct 64 ms 13508 KB Output is correct
23 Correct 77 ms 14864 KB Output is correct
24 Correct 1 ms 348 KB Output is correct
25 Runtime error 1 ms 348 KB Execution killed with signal 11
26 Halted 0 ms 0 KB -