Submission #906690

# Submission time Handle Problem Language Result Execution time Memory
906690 2024-01-14T18:03:39 Z manizare Ruins 3 (JOI20_ruins3) C++14
100 / 100
969 ms 11604 KB
#include <bits/stdc++.h>
#pragma GCC optimize("O3,unroll-loops") 
#define pb push_back
#define F first
#define S second 
#define all(a) a.begin(),a.end()
#define pii pair <int,int>
#define PII pair<pii , pii>
#define ld long double
#define int long long
#define sz(v) (int)v.size()
#define rep(i , a , b) for(int i=a;i <= (b);i++)
#define per(i , a , b) for(int i=a;i >= (b);i--)
using namespace std ;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
const int maxn = 700 , maxw= 1e3 + 10,  lg = 18 , inf = 1e18 , mod= 1e9 + 7 ;
int dp2[maxn][maxn] , dp[maxn][maxn] , f[maxn] , inv[maxn] , pr[maxn] , a[maxn] , sm[maxn][maxn] ;

int po(int a, int b){
    if(b==0)return 1;
    int v =po(a,b/2) ;
    v = v*v%mod ;
    if(b&1) v =v*a %mod ;
    return v; 
}
int c(int n , int k){
    if(n < k || k < 0)return 0 ;
    return f[n] * inv[k]%mod * inv[n-k]%mod ; 
}

signed main(){
    ios::sync_with_stdio(0);cin.tie(0);
    f[0] = 1;
    rep(i , 1, maxn-1){
        f[i] = f[i-1] * i % mod  ;
    }
    inv[maxn-1] = po(f[maxn-1] , mod-2); 
    per(i , maxn-2 , 0){
        inv[i] = inv[i+1] * (i+1) % mod ;
    }
    int n;cin >> n ;
    rep(i , 1, n){
        cin >> a[i] ; 
    }
    pr[0] = a[1] -1 ;
    rep(i , 1, n){
        pr[i] = pr[i-1] + (a[i+1] - a[i] - 1) ;
    }
    int a2 = po(2, mod-2); 
    dp2[1][0] = 1; dp2[1][1] = a2 ;
    rep(i , 1 , n){
        rep(j , 1, n){
            dp2[i+1][j+1] = (dp2[i+1][j+1] + a2*dp2[i][j] %mod)%mod ;
            dp2[i+1][j-1] = (dp2[i+1][j-1] + a2*dp2[i][j]%mod)%mod ;
            dp2[i+1][j] = (dp2[i+1][j] + dp2[i][j]%mod)%mod ;
        }
    }
    dp[0][0]= 1;
    rep(i , 0, n){
        rep(j , 1, i+2){
            sm[i][j] = (sm[i][j] + sm[i][j-1])%mod ;
        }
        rep(j , 0 , i){
            dp[i][j] = (dp[i][j] + sm[i][j] * inv[i-j]%mod)%mod ;
            rep(k ,  1 , n-i){
                int x = dp[i][j] * c(pr[j]-(i) , k) %mod * f[k] % mod * dp2[k][0] %mod ;                   
                dp[i+k][j] = (dp[i+k][j] + x) %mod ; 
                x = x * k%mod * f[i+k-1-j]%mod ;
                sm[i+k][j] = (sm[i+k][j] + x)%mod ; 
                dp[i+k][j] = (dp[i+k][j]-x*inv[i+k-j]%mod+mod)%mod ;
            }
        }
    }
    cout << dp[n][n]%mod << "\n";
}
/*

*/
# Verdict Execution time Memory Grader output
1 Correct 1 ms 4444 KB Output is correct
2 Correct 1 ms 4444 KB Output is correct
3 Correct 2 ms 4444 KB Output is correct
4 Correct 1 ms 4444 KB Output is correct
5 Correct 1 ms 4444 KB Output is correct
6 Correct 1 ms 4444 KB Output is correct
7 Correct 1 ms 4444 KB Output is correct
8 Correct 1 ms 4440 KB Output is correct
9 Correct 1 ms 4444 KB Output is correct
10 Correct 1 ms 4444 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 4444 KB Output is correct
2 Correct 1 ms 4444 KB Output is correct
3 Correct 2 ms 4444 KB Output is correct
4 Correct 1 ms 4444 KB Output is correct
5 Correct 1 ms 4444 KB Output is correct
6 Correct 1 ms 4444 KB Output is correct
7 Correct 1 ms 4444 KB Output is correct
8 Correct 1 ms 4440 KB Output is correct
9 Correct 1 ms 4444 KB Output is correct
10 Correct 1 ms 4444 KB Output is correct
11 Correct 2 ms 4700 KB Output is correct
12 Correct 2 ms 4700 KB Output is correct
13 Correct 2 ms 4700 KB Output is correct
14 Correct 2 ms 4696 KB Output is correct
15 Correct 2 ms 4696 KB Output is correct
16 Correct 2 ms 4700 KB Output is correct
17 Correct 2 ms 4696 KB Output is correct
18 Correct 2 ms 4700 KB Output is correct
19 Correct 2 ms 4700 KB Output is correct
20 Correct 2 ms 4700 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 4444 KB Output is correct
2 Correct 1 ms 4444 KB Output is correct
3 Correct 2 ms 4444 KB Output is correct
4 Correct 1 ms 4444 KB Output is correct
5 Correct 1 ms 4444 KB Output is correct
6 Correct 1 ms 4444 KB Output is correct
7 Correct 1 ms 4444 KB Output is correct
8 Correct 1 ms 4440 KB Output is correct
9 Correct 1 ms 4444 KB Output is correct
10 Correct 1 ms 4444 KB Output is correct
11 Correct 2 ms 4700 KB Output is correct
12 Correct 2 ms 4700 KB Output is correct
13 Correct 2 ms 4700 KB Output is correct
14 Correct 2 ms 4696 KB Output is correct
15 Correct 2 ms 4696 KB Output is correct
16 Correct 2 ms 4700 KB Output is correct
17 Correct 2 ms 4696 KB Output is correct
18 Correct 2 ms 4700 KB Output is correct
19 Correct 2 ms 4700 KB Output is correct
20 Correct 2 ms 4700 KB Output is correct
21 Correct 538 ms 11384 KB Output is correct
22 Correct 527 ms 11256 KB Output is correct
23 Correct 536 ms 11424 KB Output is correct
24 Correct 530 ms 11256 KB Output is correct
25 Correct 573 ms 11256 KB Output is correct
26 Correct 529 ms 11256 KB Output is correct
27 Correct 540 ms 11380 KB Output is correct
28 Correct 524 ms 11308 KB Output is correct
29 Correct 546 ms 11092 KB Output is correct
30 Correct 969 ms 11604 KB Output is correct
31 Correct 753 ms 11260 KB Output is correct
32 Correct 858 ms 11072 KB Output is correct
33 Correct 956 ms 11256 KB Output is correct
34 Correct 749 ms 11476 KB Output is correct
35 Correct 865 ms 11348 KB Output is correct
36 Correct 934 ms 11080 KB Output is correct