Submission #893792

# Submission time Handle Problem Language Result Execution time Memory
893792 2023-12-27T12:35:13 Z danikoynov Event Hopping 2 (JOI21_event2) C++14
32 / 100
3000 ms 11924 KB
/**
 ____ ____ ____ ____ ____ ____
||l |||e |||i |||n |||a |||d ||
||__|||__|||__|||__|||__|||__||
|/__\|/__\|/__\|/__\|/__\|/__\|

**/

#include<bits/stdc++.h>
#define endl '\n'

using namespace std;
typedef long long ll;

void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}

const int maxn = 1e5 + 10;

struct interval
{
    int l, r;
};

int n, k;
interval seg[maxn];
void input()
{
    cin >> n >> k;
    for (int i = 1; i <= n; i ++)
        cin >> seg[i].l >> seg[i].r;
}


bool cmp(interval it1, interval it2)
{
    if (it1.l != it2.l)
        return it1.l < it2.l;
    return it1.r > it2.r;
}

interval rel[maxn];
int m;
void get_relevant()
{
    vector < interval > vec;
    for (int i = 1; i <= n; i ++)
        vec.push_back(seg[i]);

    sort(vec.begin(), vec.end(), cmp);
    int cl = 1e9 + 10;
    for (int i = n - 1; i >= 0; i --)
    {
        if (vec[i].r >= cl)
        {
            continue;
        }
        rel[++ m] = vec[i];
        cl = vec[i].r;
    }

    reverse(rel + 1, rel + m + 1);
}

int len[2][maxn], pt[2][maxn], used[maxn];

void calc_pointers()
{
    int last = 0;
    rel[m + 1].l = 1e9 + 10;
    for (int i = 1; i <= m; i ++)
    {
        if (used[i])
            continue;
        len[0][i] = 0;
        pt[0][i] = 0;
        if (last != 0)
            pt[0][i] = pt[0][last];
        while(rel[pt[0][i]].r <= rel[i].l)
            pt[0][i] ++;
        pt[0][i] --;
        while(pt[0][i] > 0 && used[pt[0][i]])
            pt[0][i] --;

        len[0][i] = len[0][pt[0][i]] + 1;
        last = i;
    }

    last = m + 1;
    for (int i = m; i > 0; i --)
    {
        if (used[i])
            continue;
        len[1][i] = 0;
        pt[1][i] = m + 1;
        if (last != m + 1)
            pt[1][i] = pt[1][last];
        while(rel[pt[1][i]].l >= rel[i].r)
            pt[1][i] --;
        pt[1][i] ++;
        while(pt[1][i] <= m && used[pt[1][i]])
            pt[1][i] ++;
        len[1][i] = len[1][pt[1][i]] + 1;
        ///cout << "line 107 " << i << " " << pt[1][i] << endl;
        last = i;
    }
}

bool intersect(interval a, interval b)
{
    if (a.l == b.l)
        return true;
    if (a.l > b.l)
        swap(a, b);
    if (a.r >= b.r)
        return true;
    return a.r > b.l;
}

void get_intersections(interval cur)
{
    for (int i = 1; i <= m; i ++)
        if (used[i] == 0 && intersect(rel[i], cur))
            used[i] = 2;

}
set < pair < int, int > > act;
const int maxlog = 21;

int dp[maxlog][maxn];

void remove_interval(int l, int r)
{
    while(true)
    {
        set < pair < int, int > > :: iterator it = act.lower_bound({l, -1});
        if (it == act.end() || it -> first > r)
            break;
        if (it -> second <= r)
            act.erase(it);
        else
        {
            pair < int, int > nw;
            nw.first = r + 1;
            nw.second = it -> second;
            act.erase(it);
            act.insert(nw);
            break;
        }
    }
    set < pair < int, int > > :: iterator it = act.lower_bound({l, -1});
    //cout << "cur " << it -> first << " " << it -> second << endl;
    if (it != act.begin())
    {
        it = prev(it);
        ///cout << "back " << it -> first << " " << it -> second << endl;
        if (it -> second > r)
        {
            pair < int, int > lf = *it, rf = *it;
            lf.second = l - 1;
            rf.first = r + 1;
            act.erase(it);
            act.insert(lf);
            act.insert(rf);
        }
        else if (it -> second >= l)
        {
            pair < int, int > nw = *it;
            nw.second = l - 1;
            act.erase(it);
            act.insert(nw);
        }
    }
}

int first_bef(int pos)
{
    set < pair < int, int > > :: iterator it = act.lower_bound({pos, -1});
    if (it == act.begin())
        return 0;
    return min(pos - 1, prev(it) -> second);
}
int first_aft(int pos)
{

    set < pair < int, int > > :: iterator it = act.lower_bound({pos, -1});
    if (it != act.begin() && prev(it) -> second > pos)
        return pos + 1;
    if (it == act.end())
        return m + 1;
    return max(pos + 1, it -> first);
}


int lb_last, rb_last;
int get_longest(interval cur)
{
    /**int lb = 1;
    while(lb <= m && rel[lb].r <= cur.l)
        lb ++;
    lb --;
    while(lb > 0 && used[lb])
        lb --;

    int rb = m;
    while(rb > 0 && rel[rb].l >= cur.r)
        rb --;
    rb ++;
    while(rb <= m && used[rb])
        rb ++;*/

    int lf = 1, rf = m;
    while(lf <= rf)
    {
        int mf = (lf + rf) / 2;
        if (rel[mf].r <= cur.l)
            lf = mf + 1;
        else
            rf = mf - 1;
    }

    int lb = lf;

    lf = 1;
    rf = m;
    while(lf <= rf)
    {
        int mf = (lf + rf) / 2;
        if (rel[mf].l >= cur.r)
            rf = mf - 1;
        else
            lf = mf + 1;
    }

    int rb = rf;



    int longest = len[0][first_bef(lb)] + len[1][first_aft(rb)];
    lb_last = lb;
    rb_last = rb;
    /**for (pair < int, int > cur : act)
        cout << cur.first << " ::: " << cur.second << endl;
    cout << "borders " << lb << " " << rb << " " << first_bef(lb) << " " << first_aft(rb) << endl;*/
    return longest;
}

void reverse_intersections()
{
    for (int i = 1; i <= m; i ++)
        if (used[i] == 2)
            used[i] = 0;
}

void apply_intersections()
{
    for (int i = 1; i <= m; i ++)
        if (used[i] == 2)
            used[i] = 1;
}


void binary_lifting()
{
    int last = 0;
    rel[m + 1].l = 1e9 + 10;
    for (int i = 1; i <= m; i ++)
    {
        if (used[i])
            continue;
        len[0][i] = 0;
        pt[0][i] = 0;
        if (last != 0)
            pt[0][i] = pt[0][last];
        while(rel[pt[0][i]].r <= rel[i].l)
            pt[0][i] ++;
        pt[0][i] --;
        while(pt[0][i] > 0 && used[pt[0][i]])
            pt[0][i] --;

        len[0][i] = len[0][pt[0][i]] + 1;
        last = i;
    }

    for (int i = 0; i <= m; i ++)
        dp[0][i] = pt[0][i];

    for (int j = 1; j < maxlog; j ++)
    {
        for (int i = 1; i <= m; i ++)
        {
            dp[j][i] = dp[j - 1][dp[j - 1][i]];
        }
    }

}
void create_sequence()
{
    act.insert({1, m});
    binary_lifting();
    vector < int > seq;
    for (int i = 1; i <= n && k > 0; i ++)
    {
        bool valid = true;
        for (int cur : seq)
        {
            if (intersect(seg[cur], seg[i]))
            {
                valid = false;
                break;
            }
        }

        if (!valid)
            continue;

        ///get_intersections(seg[i]);
        calc_pointers();
        int longest = get_longest(seg[i]);
        /**cout << "longest " << i << " -- " << longest << endl;
        for (int j = 1; j <= m; j ++)
            cout << used[j] << " ";
        cout << endl;*/
            /*    for (int j = 1; j <= m; j ++)
            cout << len[0][j] << " ";
        cout << endl;*/
        if (longest >= k - 1)
        {

            seq.push_back(i);
            k --;
            remove_interval(lb_last, rb_last);
            get_intersections(seg[i]);
            apply_intersections();
        }

        /**for (int j = 1; j <= m; j ++)
            cout << used[j] << " ";
        cout << endl;*/
    }

    if (k != 0)
    {
        cout << -1 << endl;
        return;
    }
    for (int cur : seq)
        cout << cur << endl;
}
void solve()
{
    input();
    get_relevant();
    ///calc_pointers();
    create_sequence();
}

int main()
{
    solve();
    return 0;
}

/**
2 2
1 3
1 2

20 9
18 22
2 5
28 31
21 25
25 27
3 6
36 39
22 26
8 12
27 31
27 29
32 36
14 18
16 20
22 26
10 14
17 21
13 17
15 19
37 40


*/
# Verdict Execution time Memory Grader output
1 Correct 1 ms 8540 KB Output is correct
2 Correct 1 ms 8540 KB Output is correct
3 Correct 1 ms 8540 KB Output is correct
4 Execution timed out 3096 ms 11924 KB Time limit exceeded
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 8540 KB Output is correct
2 Correct 1 ms 8540 KB Output is correct
3 Correct 1 ms 8540 KB Output is correct
4 Correct 1 ms 8540 KB Output is correct
5 Correct 2 ms 8796 KB Output is correct
6 Correct 1 ms 8536 KB Output is correct
7 Correct 1 ms 8540 KB Output is correct
8 Correct 1 ms 8540 KB Output is correct
9 Correct 1 ms 8540 KB Output is correct
10 Correct 1 ms 8540 KB Output is correct
11 Correct 1 ms 8540 KB Output is correct
12 Correct 1 ms 8536 KB Output is correct
13 Correct 1 ms 8540 KB Output is correct
14 Correct 1 ms 8540 KB Output is correct
15 Correct 1 ms 8540 KB Output is correct
16 Correct 1 ms 8792 KB Output is correct
17 Correct 1 ms 8636 KB Output is correct
18 Correct 1 ms 8540 KB Output is correct
19 Correct 1 ms 8540 KB Output is correct
20 Correct 1 ms 8540 KB Output is correct
21 Correct 1 ms 8540 KB Output is correct
22 Correct 2 ms 8536 KB Output is correct
23 Correct 1 ms 8540 KB Output is correct
24 Correct 1 ms 8540 KB Output is correct
25 Correct 1 ms 8540 KB Output is correct
26 Correct 1 ms 8540 KB Output is correct
27 Correct 1 ms 8540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 8540 KB Output is correct
2 Correct 1 ms 8540 KB Output is correct
3 Correct 1 ms 8540 KB Output is correct
4 Correct 1 ms 8540 KB Output is correct
5 Correct 2 ms 8796 KB Output is correct
6 Correct 1 ms 8536 KB Output is correct
7 Correct 1 ms 8540 KB Output is correct
8 Correct 1 ms 8540 KB Output is correct
9 Correct 1 ms 8540 KB Output is correct
10 Correct 1 ms 8540 KB Output is correct
11 Correct 1 ms 8540 KB Output is correct
12 Correct 1 ms 8536 KB Output is correct
13 Correct 1 ms 8540 KB Output is correct
14 Correct 1 ms 8540 KB Output is correct
15 Correct 1 ms 8540 KB Output is correct
16 Correct 1 ms 8792 KB Output is correct
17 Correct 1 ms 8636 KB Output is correct
18 Correct 1 ms 8540 KB Output is correct
19 Correct 1 ms 8540 KB Output is correct
20 Correct 1 ms 8540 KB Output is correct
21 Correct 1 ms 8540 KB Output is correct
22 Correct 2 ms 8536 KB Output is correct
23 Correct 1 ms 8540 KB Output is correct
24 Correct 1 ms 8540 KB Output is correct
25 Correct 1 ms 8540 KB Output is correct
26 Correct 1 ms 8540 KB Output is correct
27 Correct 1 ms 8540 KB Output is correct
28 Correct 4 ms 8796 KB Output is correct
29 Correct 4 ms 8656 KB Output is correct
30 Correct 3 ms 8808 KB Output is correct
31 Correct 3 ms 8796 KB Output is correct
32 Correct 3 ms 8796 KB Output is correct
33 Correct 5 ms 8796 KB Output is correct
34 Correct 5 ms 8796 KB Output is correct
35 Correct 125 ms 8884 KB Output is correct
36 Correct 119 ms 8872 KB Output is correct
37 Correct 85 ms 8868 KB Output is correct
38 Correct 73 ms 8868 KB Output is correct
39 Correct 103 ms 8796 KB Output is correct
40 Correct 94 ms 8868 KB Output is correct
41 Correct 86 ms 8864 KB Output is correct
42 Correct 72 ms 8796 KB Output is correct
43 Correct 41 ms 9128 KB Output is correct
44 Correct 33 ms 8792 KB Output is correct
45 Correct 31 ms 9036 KB Output is correct
46 Correct 88 ms 8796 KB Output is correct
47 Correct 11 ms 8792 KB Output is correct
48 Correct 6 ms 8792 KB Output is correct
49 Correct 5 ms 8652 KB Output is correct
50 Correct 25 ms 8796 KB Output is correct
51 Correct 5 ms 8796 KB Output is correct
52 Correct 4 ms 8796 KB Output is correct
53 Correct 3 ms 8792 KB Output is correct
54 Correct 13 ms 8796 KB Output is correct
55 Correct 73 ms 8868 KB Output is correct
56 Correct 69 ms 8796 KB Output is correct
57 Correct 62 ms 8880 KB Output is correct
58 Correct 62 ms 8864 KB Output is correct
59 Correct 60 ms 8796 KB Output is correct
60 Correct 63 ms 9040 KB Output is correct
61 Correct 59 ms 8864 KB Output is correct
62 Correct 59 ms 8796 KB Output is correct
63 Correct 52 ms 8792 KB Output is correct
64 Correct 64 ms 8864 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 8540 KB Output is correct
2 Correct 1 ms 8540 KB Output is correct
3 Correct 1 ms 8540 KB Output is correct
4 Execution timed out 3096 ms 11924 KB Time limit exceeded
5 Halted 0 ms 0 KB -