Submission #890640

# Submission time Handle Problem Language Result Execution time Memory
890640 2023-12-21T17:43:12 Z nosaboy Job Scheduling (CEOI12_jobs) C++17
55 / 100
310 ms 20444 KB
#include <bits/stdc++.h>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
template<typename T>
using orderedMultiset = tree<T ,null_type,std::less_equal<T>, rb_tree_tag,tree_order_statistics_node_update>;
typedef long long ll;
typedef pair<int, int> pi;
typedef vector<int> vi;
#define f first
#define s second
#define pb push_back
#define rep(i, a, b) for(int i = a; i < (b); ++i) 
#define all(x) (x).begin(), (x).end()
ll MOD = 1000000007;
 
mt19937_64 RNG(chrono::steady_clock::now().time_since_epoch().count());

ll add(ll x, ll y)
{
    x += y;
    while(x >= MOD) x -= MOD;
    while(x < 0) x += MOD;
    return x;
}  
 
ll mult(ll x, ll y)
{
    return (x * 1ll * y) % MOD;
}
ll lpow(ll x, ll y)
{
    if(y == 0){
        return 1;
    }
    ll z = 1;
    while(y)
    {
        if(y & 1) z = mult(z, x);
        x = mult(x, x);
        y >>= 1;
    }
    return z;
}
bool prime(int x)
{
    for(int i = 2; i * 1ll * i <= x; i++)
        if(x % i == 0)
            return false;
    return true;    
}
 
ll inv(ll x) {
	return lpow(x, MOD - 2);
}

ll divide(ll x, ll y)
{
    return mult(x, inv(y));
}
long long gcd(long long int a, long long int b)
{
  if (b == 0)
    return a;
  return gcd(b, a % b);
}
 
// Function to return LCM of two numbers
long long lcm(int a, int b)
{
    return (a / gcd(a, b)) * b;
}
//math
 
 
vector <ll> ar;
vector <ll> br;
void printDivisors(ll n)
{
    // Note that this loop runs till square root
    for (ll i=1; i<=sqrt(n); i++)
    {
        if (n%i == 0)
        {
            // If divisors are equal, print only one
            if (n/i == i){
                ar.pb(i);
            }
                
  
            else{
                ar.pb(i);
                ar.pb(n/i);
            } // Otherwise print both
                
               
        }
    }
}
void bprintDivisors(ll n)
{
    // Note that this loop runs till square root
    for (ll i=1; i<=sqrt(n); i++)
    {
        if (n%i == 0)
        {
            // If divisors are equal, print only one
            if (n/i == i){
                br.pb(i);
            }
                
  
            else{
                br.pb(i);
                br.pb(n/i);
            } // Otherwise print both
                
               
        }
    }
}
 

struct DSU {
	vector<int> e;
	DSU(int N) { e = vector<int>(N, -1); }
 
	// get representive component (uses path compression)
	int get(int x) { return e[x] < 0 ? x : e[x] = get(e[x]); }
 
	bool same_set(int a, int b) { return get(a) == get(b); }
 
	int size(int x) { return -e[get(x)]; }
 
	bool unite(int x, int y) {  // union by size
		x = get(x), y = get(y);
		if (x == y) return false;
		if (e[x] > e[y]) swap(x, y);
		e[x] += e[y]; e[y] = x; return true;
	}
};
/** Computes x^n modulo m in O(log p) time. */
ll qexp(ll a, ll b, ll m) {
    ll res = 1;
    while (b) {
        if (b % 2) res = res * a % m;
        a = a * a % m;
        b /= 2;
    }
    return res;
}
vector<ll> fact, invf;
 
void precompute(int n) {
    /** Precomputes n! from 0 to MAXN. */
    fact.assign(n + 1, 1); 
    for (int i = 1; i <= n; i++) fact[i] = fact[i - 1] * i % MOD;
    invf.assign(n + 1, 1);
    /**
    * Precomputes all modular inverse factorials
    * from 0 to MAXN in O(n + log p) time
    */
    invf[n] = qexp(fact[n], MOD - 2, MOD);
    for (int i = n - 1; i > 0; i--) invf[i] = invf[i + 1] * (i + 1) % MOD;
}
/** Computes nCr mod p */
ll nCk(ll n,ll k) {
    if (k < 0 || k > n) return 0;
    return fact[n] * invf[k] % MOD * invf[n - k] % MOD;
    // return fact[n] * qexp(fact[k], MOD - 2, MOD) % MOD * qexp(fact[n - k], MOD - 2, MOD) % MOD;
}
 


void solve(){
    int n,d,m;cin>>n>>d>>m;
    vector <pi> v;
    rep(i,0,m){
        int u;cin>>u;v.pb({u,i});
    }
    sort(v.begin(),v.end());
    int lo = 0; int hi = 1000000005;
    hi++;
	while (lo < hi) {
		int mid = lo + (hi - lo) / 2;
        int day = 1;
        int cnt = 0;
        bool yn = true;
        rep(i,0,m){
            if(cnt == mid){
                // reset
                day++;
                cnt = 0; 
            }
            if(day - v[i].first > d && v[i].first <= day){ // past expiration
                yn = false;
            }
            cnt++;
        }
		if (yn) {
			hi = mid;
		} else {
			lo = mid + 1;
		}
	}
    int day = 0;
    int cnt = 0;
    bool yn = true;
    vi aj[n]; // for every day
    rep(i,0,m){
        if(cnt == hi){
            // reset
            day++;
            cnt = 0; 
        }
        aj[day].pb(v[i].second);
        cnt++;
    }
    cout<<hi<<endl;
    rep(i,0,n){
        rep(j,0,aj[i].size()){
            cout<<aj[i][j]+1<<" ";
        }
        cout<<0<<endl;
    }
    
}
    


int main(){
	auto begin = std::chrono::high_resolution_clock::now();
    ios_base::sync_with_stdio(0);
    cin.tie(0);
    int t;t=1;

    while(t--){
        solve();
    }
  
    
		
 
    
	auto end = std::chrono::high_resolution_clock::now();
    auto elapsed = std::chrono::duration_cast<std::chrono::nanoseconds>(end - begin);
   cerr << "Time measured: " << elapsed.count() * 1e-9 << " seconds.\n";
	return 0;
}   

Compilation message

jobs.cpp: In function 'void solve()':
jobs.cpp:17:39: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   17 | #define rep(i, a, b) for(int i = a; i < (b); ++i)
      |                                       ^
jobs.cpp:225:9: note: in expansion of macro 'rep'
  225 |         rep(j,0,aj[i].size()){
      |         ^~~
jobs.cpp:212:10: warning: unused variable 'yn' [-Wunused-variable]
  212 |     bool yn = true;
      |          ^~
# Verdict Execution time Memory Grader output
1 Incorrect 26 ms 2648 KB Output isn't correct
2 Incorrect 26 ms 2520 KB Output isn't correct
3 Incorrect 26 ms 2516 KB Output isn't correct
4 Incorrect 36 ms 2628 KB Output isn't correct
5 Incorrect 26 ms 2264 KB Output isn't correct
6 Incorrect 26 ms 2772 KB Output isn't correct
7 Incorrect 26 ms 2516 KB Output isn't correct
8 Incorrect 26 ms 2520 KB Output isn't correct
9 Correct 130 ms 4816 KB Output is correct
10 Correct 134 ms 4800 KB Output is correct
11 Correct 23 ms 2364 KB Output is correct
12 Correct 44 ms 4448 KB Output is correct
13 Correct 68 ms 8128 KB Output is correct
14 Correct 103 ms 9088 KB Output is correct
15 Incorrect 110 ms 9616 KB Output isn't correct
16 Correct 155 ms 13844 KB Output is correct
17 Correct 174 ms 17724 KB Output is correct
18 Correct 222 ms 18368 KB Output is correct
19 Correct 310 ms 20444 KB Output is correct
20 Correct 178 ms 16032 KB Output is correct