# |
Submission time |
Handle |
Problem |
Language |
Result |
Execution time |
Memory |
888611 |
2023-12-18T01:43:02 Z |
ad_red |
Tri (CEOI09_tri) |
C++17 |
|
1185 ms |
6952 KB |
#include <bits/stdc++.h>
#define endl "\n"
using namespace std;
using ll = long long;
struct Point {
ll x, y;
};
ll vp(Point a, Point b) {
return a.x * b.y - a.y * b.x;
}
ll sgn(Point a, Point b, Point c) {
// -1 if the order is A-B-C from left to right if B is the bottom point
// 1 or 0 otherwise
ll q = vp(Point{a.x - b.x, a.y - b.y}, Point{c.x - b.x, c.y - b.y});
return (q / abs(q));
}
bool operator<(Point a, Point b) {
return sgn(a, Point{0LL, 0LL}, b) == -1;
}
bool in_triangle(Point a, Point b, Point c, Point p) {
// assuming A-B-C
return (sgn(a, b, p) == -1 && sgn(c, b, p) == 1 && sgn(p, c, a) == -1);
}
bool cmp_hull(Point a, Point b) {
if (a.x == b.x) return a.y < b.y;
return a.x < b.x;
}
/*
Plan:
0. Sort all points by angle
1. Construct sqrt(n) convex hulls for all point sets
2. For each triangle, consider all sqrt(n) ranges of points already present
3. Check all points that are outside of the hulls manually
3.5 On both sides
4. For each complete range with a hull do a binary search on that hull:
5. Start with the leftmost (by the angle) point, end with the point anticlockwise on the convex hull
6. Check if the mid is in the triangle, if it is, then break. If we are moving further from the triangle by choosing a point to the right of the current one (cur_mid), then r = mid, else l = mid.
Claim: the total thing takes no more than 200 lines.
*/
vector<Point> points;
const ll sqrt_size = 1200;
signed main() {
ll n, m;
cin >> n >> m;
for (ll i = 0; i < n; i++) {
ll x, y;
cin >> x >> y;
points.push_back(Point{x, y});
}
sort(points.begin(), points.end()); // the comparator is there
vector<vector<Point>> hulls(n);
for (ll i = 0; i < n; i++) {
hulls[i / sqrt_size].push_back(points[i]);
}
for (ll i = 0; i < n; i++) {
if (hulls[i].empty()) continue;
vector<Point> hull;
sort(hulls[i].begin(), hulls[i].end(), cmp_hull);
for (auto p : hulls[i]) {
while (hull.size() >= 2 && sgn(hull[(ll)hull.size() - 2], p, hull.back()) <= 0LL) {
hull.pop_back();
}
hull.push_back(p);
}
hulls[i].clear();
for (auto c : hull) {
hulls[i].push_back(c);
}
// top convex hull only!
}
// end of hull processing
for (ll trn = 0; trn < m; trn++) {
// current triangle
Point a, b;
cin >> a.x >> a.y >> b.x >> b.y;
if (sgn(a, Point{0LL, 0LL}, b) >= 0) swap(a, b);
ll left_start, right_end;
// left_start - leftmost point in the angle
// right_end - rightmost point in the angle
{
ll l = -1;
ll r = n - 1;
while (r - l > 1) {
ll mid = (l + r) / 2;
if (sgn(a, Point{0LL, 0LL}, points[mid]) >= 0) {
l = mid;
} else {
r = mid;
}
}
left_start = r;
}
{
ll l = 0;
ll r = n;
while (r - l > 1) {
ll mid = (l + r) / 2;
if (sgn(b, Point{0LL, 0LL}, points[mid]) >= 0) {
l = mid;
} else {
r = mid;
}
}
right_end = l;
}
if (left_start > right_end) {
cout << "N" << endl;
continue;
}
bool flag = false;
if (right_end - left_start <= sqrt_size) {
for (ll i = left_start; i <= right_end; i++) {
if (in_triangle(a, Point{0LL, 0LL}, b, points[i])) {
flag = true;
}
}
if (flag) {
cout << "Y" << endl;
} else {
cout << "N" << endl;
}
continue;
}
flag = false;
while (left_start % sqrt_size != 0) {
if (in_triangle(a, Point{0LL, 0LL}, b, points[left_start])) {
flag = true;
}
left_start++;
}
while ((right_end >= left_start) && (right_end % sqrt_size != sqrt_size - 1)) {
if (in_triangle(a, Point{0LL, 0LL}, b, points[right_end])) {
flag = true;
}
right_end--;
}
assert(left_start % sqrt_size == 0);
assert(right_end % sqrt_size == sqrt_size - 1);
for (ll i = (left_start / sqrt_size); i <= (right_end / sqrt_size); i++) {
// convex hull processing
ll l = -1;
ll r = (ll)hulls[i].size();
while (r - l > 1) {
ll mid = (r + l) / 2;
if (in_triangle(a, Point{0LL, 0LL}, b, hulls[i][mid])) {
flag = true;
break;
}
if (mid + 1 == (ll)hulls[i].size() || (!in_triangle(a, Point{0LL, 0LL}, b, hulls[i][mid + 1]) && sgn(hulls[i][mid + 1], a, hulls[i][mid]) == -1)) {
r = mid;
} else {
l = mid;
}
}
if (flag) break;
}
if (flag) {
cout << "Y" << endl;
} else {
cout << "N" << endl;
}
}
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
6 ms |
348 KB |
Output is correct |
2 |
Correct |
6 ms |
528 KB |
Output is correct |
3 |
Correct |
94 ms |
2280 KB |
Output is correct |
4 |
Correct |
508 ms |
3524 KB |
Output is correct |
5 |
Correct |
1185 ms |
6952 KB |
Output is correct |
6 |
Correct |
796 ms |
5352 KB |
Output is correct |
7 |
Correct |
1012 ms |
6388 KB |
Output is correct |
8 |
Correct |
465 ms |
5312 KB |
Output is correct |
9 |
Correct |
530 ms |
6332 KB |
Output is correct |
10 |
Correct |
577 ms |
6560 KB |
Output is correct |