# |
Submission time |
Handle |
Problem |
Language |
Result |
Execution time |
Memory |
888609 |
2023-12-18T01:41:13 Z |
ad_red |
Tri (CEOI09_tri) |
C++17 |
|
1055 ms |
6784 KB |
#include <bits/stdc++.h>
#define endl "\n"
using namespace std;
using ll = long long;
struct Point {
ll x, y;
};
ll vp(Point a, Point b) {
return a.x * b.y - a.y * b.x;
}
ll sgn(Point a, Point b, Point c) {
// -1 if the order is A-B-C from left to right if B is the bottom point
// 1 or 0 otherwise
ll q = vp(Point{a.x - b.x, a.y - b.y}, Point{c.x - b.x, c.y - b.y});
return (q / abs(q));
}
bool operator<(Point a, Point b) {
return sgn(a, Point{0LL, 0LL}, b) == -1;
}
bool in_triangle(Point a, Point b, Point c, Point p) {
// assuming A-B-C
return (sgn(a, b, p) == -1 && sgn(c, b, p) == 1 && sgn(p, c, a) == -1);
}
bool cmp_hull(Point a, Point b) {
if (a.x == b.x) return a.y < b.y;
return a.x < b.x;
}
/*
Plan:
0. Sort all points by angle
1. Construct sqrt(n) convex hulls for all point sets
2. For each triangle, consider all sqrt(n) ranges of points already present
3. Check all points that are outside of the hulls manually
3.5 On both sides
4. For each complete range with a hull do a binary search on that hull:
5. Start with the leftmost (by the angle) point, end with the point anticlockwise on the convex hull
6. Check if the mid is in the triangle, if it is, then break. If we are moving further from the triangle by choosing a point to the right of the current one (cur_mid), then r = mid, else l = mid.
Claim: the total thing takes no more than 200 lines.
*/
vector<Point> points;
const ll sqrt_size = 1200;
signed main() {
ll n, m;
cin >> n >> m;
for (ll i = 0; i < n; i++) {
ll x, y;
cin >> x >> y;
points.push_back(Point{x, y});
}
sort(points.begin(), points.end()); // the comparator is there
vector<vector<Point>> hulls(n);
for (ll i = 0; i < n; i++) {
hulls[i / sqrt_size].push_back(points[i]);
}
for (ll i = 0; i < n; i++) {
if (hulls[i].empty()) continue;
vector<Point> hull;
sort(hulls[i].begin(), hulls[i].end(), cmp_hull);
for (auto p : hulls[i]) {
while (hull.size() >= 2 && sgn(hull[(ll)hull.size() - 2], p, hull.back()) <= 0LL) {
hull.pop_back();
}
hull.push_back(p);
}
hulls[i].clear();
for (auto c : hull) {
hulls[i].push_back(c);
}
// top convex hull only!
}
// end of hull processing
for (ll trn = 0; trn < m; trn++) {
// current triangle
Point a, b;
cin >> a.x >> a.y >> b.x >> b.y;
if (sgn(a, Point{0LL, 0LL}, b) >= 0) swap(a, b);
ll left_start, right_end;
// left_start - leftmost point in the angle
// right_end - rightmost point in the angle
{
ll l = -1;
ll r = n - 1;
while (r - l > 1) {
ll mid = (l + r) / 2;
if (sgn(a, Point{0LL, 0LL}, points[mid]) >= 0) {
l = mid;
} else {
r = mid;
}
}
left_start = r;
}
{
ll l = 0;
ll r = n;
while (r - l > 1) {
ll mid = (l + r) / 2;
if (sgn(b, Point{0LL, 0LL}, points[mid]) >= 0) {
l = mid;
} else {
r = mid;
}
}
right_end = l;
}
if (left_start > right_end) {
cout << "N" << endl;
continue;
}
bool flag = false;
if (right_end - left_start <= sqrt_size) {
for (ll i = left_start; i <= right_end; i++) {
if (in_triangle(a, Point{0LL, 0LL}, b, points[i])) {
flag = true;
}
}
if (flag) {
cout << "Y" << endl;
} else {
cout << "N" << endl;
}
continue;
}
flag = false;
while (left_start % sqrt_size != 0) {
if (in_triangle(a, Point{0LL, 0LL}, b, points[left_start])) {
flag = true;
}
left_start++;
}
while ((right_end >= left_start) && (right_end % sqrt_size != sqrt_size - 1)) {
if (in_triangle(a, Point{0LL, 0LL}, b, points[right_end])) {
flag = true;
}
right_end--;
}
assert(left_start % sqrt_size == 0);
assert(right_end % sqrt_size == sqrt_size - 1);
for (ll i = (left_start / sqrt_size); i <= (right_end / sqrt_size); i++) {
// convex hull processing
ll l = 0;
ll r = (ll)hulls[i].size() - 1;
while (l <= r) {
ll mid = (r + l) / 2;
if (in_triangle(a, Point{0LL, 0LL}, b, hulls[i][mid])) {
flag = true;
break;
}
if (mid + 1 == (ll)hulls[i].size() || (!in_triangle(a, Point{0LL, 0LL}, b, hulls[i][mid + 1]) && sgn(hulls[i][mid + 1], a, hulls[i][mid]) == -1)) {
r = mid - 1;
} else {
l = mid + 1;
}
}
if (flag) break;
}
if (flag) {
cout << "Y" << endl;
} else {
cout << "N" << endl;
}
}
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
6 ms |
348 KB |
Output is correct |
2 |
Correct |
6 ms |
348 KB |
Output is correct |
3 |
Correct |
93 ms |
2308 KB |
Output is correct |
4 |
Correct |
503 ms |
3528 KB |
Output is correct |
5 |
Correct |
1055 ms |
6784 KB |
Output is correct |
6 |
Correct |
812 ms |
5360 KB |
Output is correct |
7 |
Correct |
1010 ms |
6648 KB |
Output is correct |
8 |
Correct |
467 ms |
5596 KB |
Output is correct |
9 |
Correct |
537 ms |
6112 KB |
Output is correct |
10 |
Correct |
625 ms |
6428 KB |
Output is correct |