#include <bits/stdc++.h>
#define endl "\n"
using namespace std;
using ll = long long;
struct Point {
ll x, y;
};
ll vp(Point a, Point b) {
return a.x * b.y - a.y * b.x;
}
ll sgn(Point a, Point b, Point c) {
// -1 if the order is A-B-C from left to right if B is the bottom point
// 1 or 0 otherwise
ll q = vp(Point{a.x - b.x, a.y - b.y}, Point{c.x - b.x, c.y - b.y});
return (q / abs(q));
}
bool operator<(Point a, Point b) {
return sgn(a, Point{0LL, 0LL}, b) == -1;
}
bool in_triangle(Point a, Point b, Point c, Point p) {
// assuming A-B-C
return (sgn(a, b, p) == -1 && sgn(c, b, p) == 1 && sgn(p, c, a) == -1);
}
bool cmp_hull(Point a, Point b) {
if (a.x == b.x) return a.y < b.y;
return a.x < b.x;
}
/*
Plan:
0. Sort all points by angle
1. Construct sqrt(n) convex hulls for all point sets
2. For each triangle, consider all sqrt(n) ranges of points already present
3. Check all points that are outside of the hulls manually
3.5 On both sides
4. For each complete range with a hull do a binary search on that hull:
5. Start with the leftmost (by the angle) point, end with the point anticlockwise on the convex hull
6. Check if the mid is in the triangle, if it is, then break. If we are moving further from the triangle by choosing a point to the right of the current one (cur_mid), then r = mid, else l = mid.
Claim: the total thing takes no more than 200 lines.
*/
vector<Point> points;
const ll sqrt_size = 1200;
signed main() {
ll n, m;
cin >> n >> m;
for (ll i = 0; i < n; i++) {
ll x, y;
cin >> x >> y;
points.push_back(Point{x, y});
}
sort(points.begin(), points.end()); // the comparator is there
vector<vector<Point>> hulls(n);
for (ll i = 0; i < n; i++) {
hulls[i / sqrt_size].push_back(points[i]);
}
for (ll i = 0; i < n; i++) {
if (hulls[i].empty()) continue;
vector<Point> hull;
sort(hulls[i].begin(), hulls[i].end(), cmp_hull);
for (auto p : hulls[i]) {
while (hull.size() >= 2 && sgn(p, hull[(ll)hull.size() - 2], hull.back()) == -1) {
hull.pop_back();
}
hull.push_back(p);
}
hulls[i].clear();
for (auto c : hull) {
hulls[i].push_back(c);
}
// top convex hull only!
}
// end of hull processing
for (ll trn = 0; trn < m; trn++) {
// current triangle
Point a, b;
cin >> a.x >> a.y >> b.x >> b.y;
if (sgn(a, Point{0LL, 0LL}, b) >= 0) swap(a, b);
ll left_start = n - 1, right_end = 0;
// left_start - leftmost point in the angle
// right_end - rightmost point in the angle
{
ll l = 0;
ll r = n - 1;
while (l <= r) {
ll mid = (l + r) / 2;
if (sgn(a, Point{0LL, 0LL}, points[mid]) >= 0) {
l = mid + 1;
} else {
r = mid - 1;
left_start = mid;
}
}
}
{
ll l = 0;
ll r = n - 1;
while (l <= r) {
ll mid = (l + r) / 2;
if (sgn(b, Point{0LL, 0LL}, points[mid]) >= 0) {
l = mid + 1;
right_end = mid;
} else {
r = mid - 1;
}
}
}
if (left_start > right_end) {
cout << "N" << endl;
continue;
}
bool flag = false;
if (right_end - left_start <= sqrt_size) {
for (ll i = left_start; i <= right_end; i++) {
if (in_triangle(a, Point{0LL, 0LL}, b, points[i])) {
flag = true;
}
}
if (flag) {
cout << "Y" << endl;
} else {
cout << "N" << endl;
}
continue;
}
flag = false;
while (left_start % sqrt_size != 0) {
if (in_triangle(a, Point{0LL, 0LL}, b, points[left_start])) {
flag = true;
}
left_start++;
}
while ((right_end >= left_start) && (right_end % sqrt_size != sqrt_size - 1)) {
if (in_triangle(a, Point{0LL, 0LL}, b, points[right_end])) {
flag = true;
}
right_end--;
}
assert(left_start % sqrt_size == 0);
assert(right_end % sqrt_size == sqrt_size - 1);
for (ll i = (left_start / sqrt_size); i <= (right_end / sqrt_size); i++) {
// convex hull processing
ll l = 0;
ll r = (ll)hulls[i].size() - 1;
while (l <= r) {
ll mid = (r + l) / 2;
if (in_triangle(a, Point{0LL, 0LL}, b, hulls[i][mid])) {
flag = true;
break;
}
if (mid + 1 == (ll)hulls[i].size() || (!in_triangle(a, Point{0LL, 0LL}, b, hulls[i][mid + 1]) && sgn(hulls[i][mid + 1], a, hulls[i][mid]) == -1)) {
r = mid - 1;
} else {
l = mid + 1;
}
}
if (flag) break;
}
if (flag) {
cout << "Y" << endl;
} else {
cout << "N" << endl;
}
}
return 0;
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
6 ms |
348 KB |
Output is correct |
2 |
Correct |
7 ms |
348 KB |
Output is correct |
3 |
Correct |
96 ms |
2260 KB |
Output is correct |
4 |
Incorrect |
375 ms |
3272 KB |
Output isn't correct |
5 |
Incorrect |
733 ms |
6792 KB |
Output isn't correct |
6 |
Incorrect |
788 ms |
5316 KB |
Output isn't correct |
7 |
Incorrect |
968 ms |
6732 KB |
Output isn't correct |
8 |
Incorrect |
477 ms |
5356 KB |
Output isn't correct |
9 |
Incorrect |
521 ms |
5828 KB |
Output isn't correct |
10 |
Incorrect |
583 ms |
6588 KB |
Output isn't correct |