답안 #888175

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
888175 2023-12-16T09:36:17 Z ad_red Tri (CEOI09_tri) C++17
30 / 100
968 ms 6792 KB
#include <bits/stdc++.h>
#define endl "\n"
  
using namespace std;
using ll = long long;
  
struct Point {
  ll x, y;
};
  
ll vp(Point a, Point b) {
  return a.x * b.y - a.y * b.x;
}
  
ll sgn(Point a, Point b, Point c) {
  // -1 if the order is A-B-C from left to right if B is the bottom point
  // 1 or 0 otherwise
  
  ll q = vp(Point{a.x - b.x, a.y - b.y}, Point{c.x - b.x, c.y - b.y});
  return (q / abs(q));
}
  
bool operator<(Point a, Point b) {
  return sgn(a, Point{0LL, 0LL}, b) == -1;
}
  
bool in_triangle(Point a, Point b, Point c, Point p) {
  // assuming A-B-C
  
  return (sgn(a, b, p) == -1 && sgn(c, b, p) == 1 && sgn(p, c, a) == -1);
}
  
bool cmp_hull(Point a, Point b) {
  if (a.x == b.x) return a.y < b.y;
  return a.x < b.x;
}
  
/*
  Plan:
  0. Sort all points by angle
  1. Construct sqrt(n) convex hulls for all point sets
  2. For each triangle, consider all sqrt(n) ranges of points already present
  3. Check all points that are outside of the hulls manually
  3.5 On both sides
  4. For each complete range with a hull do a binary search on that hull:
  5. Start with the leftmost (by the angle) point, end with the point anticlockwise on the convex hull
  6. Check if the mid is in the triangle, if it is, then break. If we are moving further from the triangle by choosing a point to the right of the current one (cur_mid), then r = mid, else l = mid.
  
  Claim: the total thing takes no more than 200 lines.
*/
  
vector<Point> points;
const ll sqrt_size = 1200;

signed main() {
  ll n, m;
  cin >> n >> m;
  
  for (ll i = 0; i < n; i++) {
    ll x, y;
    cin >> x >> y;
  
    points.push_back(Point{x, y});
  }
  
  sort(points.begin(), points.end()); // the comparator is there
  
  vector<vector<Point>> hulls(n);
  
  for (ll i = 0; i < n; i++) {
    hulls[i / sqrt_size].push_back(points[i]);
  }
  
  
  for (ll i = 0; i < n; i++) {
    if (hulls[i].empty()) continue;
    
    vector<Point> hull;
  
    sort(hulls[i].begin(), hulls[i].end(), cmp_hull);
  
    for (auto p : hulls[i]) {
      while (hull.size() >= 2 && sgn(p, hull[(ll)hull.size() - 2], hull.back()) == -1) {
        hull.pop_back();
      }
      hull.push_back(p);
    }

    hulls[i].clear();
    for (auto c : hull) {
      hulls[i].push_back(c);
    }
    // top convex hull only!
  }
  
  // end of hull processing
  
  for (ll trn = 0; trn < m; trn++) {
    // current triangle
  
    Point a, b;
    cin >> a.x >> a.y >> b.x >> b.y;
  
    if (sgn(a, Point{0LL, 0LL}, b) >= 0) swap(a, b);
  
    ll left_start = n - 1, right_end = 0;
  
    // left_start - leftmost point in the angle
    // right_end - rightmost point in the angle
    {
      ll l = 0;
      ll r = n - 1;
    
      while (l <= r) {
        ll mid = (l + r) / 2;
        if (sgn(a, Point{0LL, 0LL}, points[mid]) >= 0) {
          l = mid + 1;
        } else {
          r = mid - 1;
          left_start = mid;
        }
      }
    }
  
    {
      ll l = 0;
      ll r = n - 1;
    
      while (l <= r) {
        ll mid = (l + r) / 2;
        if (sgn(b, Point{0LL, 0LL}, points[mid]) >= 0) {
          l = mid + 1;
          right_end = mid;
        } else {
          r = mid - 1;
        }
      }
    }
  
    if (left_start > right_end) {
      cout << "N" << endl;
      continue;
    }
  
    bool flag = false;
  
    if (right_end - left_start <= sqrt_size) {
      for (ll i = left_start; i <= right_end; i++) {
        if (in_triangle(a, Point{0LL, 0LL}, b, points[i])) {
          flag = true;
        }
      }
  
      if (flag) {
        cout << "Y" << endl;
      } else {
        cout << "N" << endl;
      }
  
      continue;
    }
  
    flag = false;
  
    while (left_start % sqrt_size != 0) {
      if (in_triangle(a, Point{0LL, 0LL}, b, points[left_start])) {
        flag = true;
      }
      left_start++;
    }
  
    while ((right_end >= left_start) && (right_end % sqrt_size != sqrt_size - 1)) {
      if (in_triangle(a, Point{0LL, 0LL}, b, points[right_end])) {
        flag = true;
      }
      right_end--;
    }

    assert(left_start % sqrt_size == 0);
    assert(right_end % sqrt_size == sqrt_size - 1);
  
    for (ll i = (left_start / sqrt_size); i <= (right_end / sqrt_size); i++) {
      // convex hull processing
  
      ll l = 0;
      ll r = (ll)hulls[i].size() - 1;
  
      while (l <= r) {
        ll mid = (r + l) / 2;
  
        if (in_triangle(a, Point{0LL, 0LL}, b, hulls[i][mid])) {
          flag = true;
          break;
        }
  
        if (mid + 1 == (ll)hulls[i].size() || (!in_triangle(a, Point{0LL, 0LL}, b, hulls[i][mid + 1]) && sgn(hulls[i][mid + 1], a, hulls[i][mid]) == -1)) {
          r = mid - 1;
        } else {
          l = mid + 1;
        }
      }

      if (flag) break;
    }
  
    if (flag) {
      cout << "Y" << endl;
    } else {
      cout << "N" << endl;
    }
  }
  
  return 0;
}
# 결과 실행 시간 메모리 Grader output
1 Correct 6 ms 348 KB Output is correct
2 Correct 7 ms 348 KB Output is correct
3 Correct 96 ms 2260 KB Output is correct
4 Incorrect 375 ms 3272 KB Output isn't correct
5 Incorrect 733 ms 6792 KB Output isn't correct
6 Incorrect 788 ms 5316 KB Output isn't correct
7 Incorrect 968 ms 6732 KB Output isn't correct
8 Incorrect 477 ms 5356 KB Output isn't correct
9 Incorrect 521 ms 5828 KB Output isn't correct
10 Incorrect 583 ms 6588 KB Output isn't correct