#include <bits/stdc++.h>
#define endl "\n"
using namespace std;
using ll = long long;
struct Point{
ll x, y;
};
ll vp(Point a, Point b) {
return a.x * b.y - a.y * b.x;
}
ll sgn(Point a, Point b, Point c) {
// -1 if the order is A-B-C from left to right if B is the bottom point
// 1 or 0 otherwise
ll q = vp(Point{a.x - b.x, a.y - b.y}, Point{c.x - b.x, c.y - b.y});
return (q / abs(q));
}
bool operator<(Point a, Point b) {
return sgn(a, Point{0LL, 0LL}, b) == -1;
}
bool in_triangle(Point a, Point b, Point c, Point p) {
// assuming A-B-C
return (sgn(a, b, p) == -1 && sgn(c, b, p) == 1 && sgn(p, c, a) == -1);
}
bool cmp_hull(Point a, Point b) {
if (a.x == b.x) return a.y < b.y;
return a.x < b.x;
}
/*
Plan:
0. Sort all points by angle
1. Construct sqrt(n) convex hulls for all point sets
2. For each triangle, consider all sqrt(n) ranges of points already present
3. Check all points that are outside of the hulls manually
3.5 On both sides
4. For each complete range with a hull do a binary search on that hull:
5. Start with the leftmost (by the angle) point, end with the point anticlockwise on the convex hull
6. Check if the mid is in the triangle, if it is, then break. If we are moving further from the triangle by choosing a point to the right of the current one (cur_mid), then r = mid, else l = mid.
Claim: the total thing takes no more than 200 lines.
*/
vector<Point> points;
const ll sqrt_size = 1200;
signed main() {
ll n, m;
cin >> n >> m;
for (ll i = 0; i < n; i++) {
ll x, y;
cin >> x >> y;
points.push_back(Point{x, y});
}
sort(points.begin(), points.end()); // the comparator is there
vector<vector<Point>> hulls(n);
for (ll i = 0; i < n; i++) {
hulls[i / sqrt_size].push_back(points[i]);
}
for (ll i = 0; i < n; i++) {
if (hulls[i].empty()) continue;
vector<Point> hull;
sort(hulls[i].begin(), hulls[i].end(), cmp_hull);
for (auto p : hulls[i]) {
while (hull.size() > 1 && sgn(p, hull[(ll)hull.size() - 2], hull.back()) == -1) {
hull.pop_back();
}
hull.push_back(p);
}
hulls[i] = hull;
// top convex hull only!
}
// end of hull processing
for (ll trn = 0; trn < m; trn++) {
// current triangle
Point a, b;
cin >> a.x >> a.y >> b.x >> b.y;
if (sgn(a, Point{0LL, 0LL}, b) >= 0) swap(a, b);
ll left_start = n - 1, right_end = 0;
// left_start - leftmost point in the angle
// right_end - rightmost point in the angle
{
ll l = 0;
ll r = n;
while (r - l > 1) {
ll mid = (l + r) / 2;
if (sgn(a, Point{0LL, 0LL}, points[mid]) >= 0) {
l = mid;
} else {
r = mid;
}
}
left_start = r;
}
{
ll l = 0;
ll r = n;
while (r - l > 1) {
ll mid = (l + r) / 2;
if (sgn(b, Point{0LL, 0LL}, points[mid]) >= 0) {
l = mid;
} else {
r = mid;
}
}
right_end = l;
}
if (left_start > right_end) {
cout << "N" << endl;
continue;
}
bool flag = false;
if (right_end - left_start <= sqrt_size) {
for (ll i = left_start; i <= right_end; i++) {
if (in_triangle(a, Point{0LL, 0LL}, b, points[i])) {
flag = true;
break;
}
}
if (flag) {
cout << "Y" << endl;
} else {
cout << "N" << endl;
}
continue;
}
flag = false;
while (left_start % sqrt_size != 0) {
if (in_triangle(a, Point{0LL, 0LL}, b, points[left_start])) {
flag = true;
}
left_start++;
}
while ((right_end > left_start) && (right_end % sqrt_size != sqrt_size - 1)) {
if (in_triangle(a, Point{0LL, 0LL}, b, points[right_end])) {
flag = true;
}
right_end--;
}
// assert(right_end % sqrt_size == 0);
// assert(left_start % sqrt_size == 0);
for (ll i = (left_start / sqrt_size); i <= (right_end / sqrt_size); i++) {
// convex hull processing
ll l = 0;
ll r = (ll)hulls[i].size();
while (r - l > 1) {
ll mid = (r + l) / 2;
if (in_triangle(a, Point{0LL, 0LL}, b, hulls[i][mid])) {
flag = true;
break;
}
if (mid + 1 == (ll)hulls[i].size() || !in_triangle(a, Point{0LL, 0LL}, b, hulls[i][mid + 1]) && sgn(hulls[i][mid + 1], a, hulls[i][mid]) == -1) {
r = mid;
} else {
l = mid;
}
}
if (flag) break;
}
if (flag) {
cout << "Y" << endl;
} else {
cout << "N" << endl;
}
}
return 0;
}
Compilation message
tri.cpp: In function 'int main()':
tri.cpp:197:102: warning: suggest parentheses around '&&' within '||' [-Wparentheses]
197 | if (mid + 1 == (ll)hulls[i].size() || !in_triangle(a, Point{0LL, 0LL}, b, hulls[i][mid + 1]) && sgn(hulls[i][mid + 1], a, hulls[i][mid]) == -1) {
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
5 ms |
348 KB |
Output is correct |
2 |
Correct |
5 ms |
348 KB |
Output is correct |
3 |
Incorrect |
253 ms |
2308 KB |
Output isn't correct |
4 |
Incorrect |
656 ms |
3696 KB |
Output isn't correct |
5 |
Incorrect |
1327 ms |
6760 KB |
Output isn't correct |
6 |
Incorrect |
834 ms |
5460 KB |
Output isn't correct |
7 |
Incorrect |
1074 ms |
6592 KB |
Output isn't correct |
8 |
Incorrect |
457 ms |
5588 KB |
Output isn't correct |
9 |
Incorrect |
520 ms |
6348 KB |
Output isn't correct |
10 |
Incorrect |
627 ms |
6332 KB |
Output isn't correct |