답안 #888162

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
888162 2023-12-16T09:09:27 Z ad_red Tri (CEOI09_tri) C++17
20 / 100
1327 ms 6760 KB
#include <bits/stdc++.h>
#define endl "\n"
  
using namespace std;
using ll = long long;

  
struct Point{
  ll x, y;
};
  
ll vp(Point a, Point b) {
  return a.x * b.y - a.y * b.x;
}
  
ll sgn(Point a, Point b, Point c) {
  // -1 if the order is A-B-C from left to right if B is the bottom point
  // 1 or 0 otherwise
  
  ll q = vp(Point{a.x - b.x, a.y - b.y}, Point{c.x - b.x, c.y - b.y});
  return (q / abs(q));
}
  
bool operator<(Point a, Point b) {
  return sgn(a, Point{0LL, 0LL}, b) == -1;
}
  
bool in_triangle(Point a, Point b, Point c, Point p) {
  // assuming A-B-C
  
  return (sgn(a, b, p) == -1 && sgn(c, b, p) == 1 && sgn(p, c, a) == -1);
}
  
bool cmp_hull(Point a, Point b) {
  if (a.x == b.x) return a.y < b.y;
  return a.x < b.x;
}
  
/*
  Plan:
  0. Sort all points by angle
  1. Construct sqrt(n) convex hulls for all point sets
  2. For each triangle, consider all sqrt(n) ranges of points already present
  3. Check all points that are outside of the hulls manually
  3.5 On both sides
  4. For each complete range with a hull do a binary search on that hull:
  5. Start with the leftmost (by the angle) point, end with the point anticlockwise on the convex hull
  6. Check if the mid is in the triangle, if it is, then break. If we are moving further from the triangle by choosing a point to the right of the current one (cur_mid), then r = mid, else l = mid.
  
  Claim: the total thing takes no more than 200 lines.
*/
  
vector<Point> points;
const ll sqrt_size = 1200;

signed main() {
  ll n, m;
  cin >> n >> m;
  
  for (ll i = 0; i < n; i++) {
    ll x, y;
    cin >> x >> y;
  
    points.push_back(Point{x, y});
  }
  
  sort(points.begin(), points.end()); // the comparator is there
  
  vector<vector<Point>> hulls(n);
  
  for (ll i = 0; i < n; i++) {
    hulls[i / sqrt_size].push_back(points[i]);
  }
  
  
  for (ll i = 0; i < n; i++) {
    if (hulls[i].empty()) continue;
    
    vector<Point> hull;
  
    sort(hulls[i].begin(), hulls[i].end(), cmp_hull);
  
    for (auto p : hulls[i]) {
      while (hull.size() > 1 && sgn(p, hull[(ll)hull.size() - 2], hull.back()) == -1) {
        hull.pop_back();
      }
      hull.push_back(p);
    }
  
    hulls[i] = hull;
    // top convex hull only!
  }
  
  // end of hull processing
  
  for (ll trn = 0; trn < m; trn++) {
    // current triangle
  
    Point a, b;
    cin >> a.x >> a.y >> b.x >> b.y;
  
    if (sgn(a, Point{0LL, 0LL}, b) >= 0) swap(a, b);
  
    ll left_start = n - 1, right_end = 0;
  
    // left_start - leftmost point in the angle
    // right_end - rightmost point in the angle
    {
      ll l = 0;
      ll r = n;
    
      while (r - l > 1) {
        ll mid = (l + r) / 2;
        if (sgn(a, Point{0LL, 0LL}, points[mid]) >= 0) {
          l = mid;
        } else {
          r = mid;
        }
      }
    
      left_start = r;
    }
  
    {
      ll l = 0;
      ll r = n;
    
      while (r - l > 1) {
        ll mid = (l + r) / 2;
        if (sgn(b, Point{0LL, 0LL}, points[mid]) >= 0) {
          l = mid;
        } else {
          r = mid;
        }
      }
    
      right_end = l;
    }
  
    if (left_start > right_end) {
      cout << "N" << endl;
      continue;
    }
  
    bool flag = false;
  
    if (right_end - left_start <= sqrt_size) {
      for (ll i = left_start; i <= right_end; i++) {
        if (in_triangle(a, Point{0LL, 0LL}, b, points[i])) {
          flag = true;
          break;
        }
      }
  
      if (flag) {
        cout << "Y" << endl;
      } else {
        cout << "N" << endl;
      }
  
      continue;
    }
  
    flag = false;
  
    while (left_start % sqrt_size != 0) {
      if (in_triangle(a, Point{0LL, 0LL}, b, points[left_start])) {
        flag = true;
      }
      left_start++;
    }
  
    while ((right_end > left_start) && (right_end % sqrt_size != sqrt_size - 1)) {
      if (in_triangle(a, Point{0LL, 0LL}, b, points[right_end])) {
        flag = true;
      }
      right_end--;
    }

    // assert(right_end % sqrt_size == 0);
    // assert(left_start % sqrt_size == 0);
  
    for (ll i = (left_start / sqrt_size); i <= (right_end / sqrt_size); i++) {
      // convex hull processing
  
      ll l = 0;
      ll r = (ll)hulls[i].size();
  
      while (r - l > 1) {
        ll mid = (r + l) / 2;
  
        if (in_triangle(a, Point{0LL, 0LL}, b, hulls[i][mid])) {
          flag = true;
          break;
        }
  
        if (mid + 1 == (ll)hulls[i].size() || !in_triangle(a, Point{0LL, 0LL}, b, hulls[i][mid + 1]) && sgn(hulls[i][mid + 1], a, hulls[i][mid]) == -1) {
          r = mid;
        } else {
          l = mid;
        }
      }
  
      if (flag) break;
    }
  
    if (flag) {
      cout << "Y" << endl;
    } else {
      cout << "N" << endl;
    }
  }
  
  return 0;
}

Compilation message

tri.cpp: In function 'int main()':
tri.cpp:197:102: warning: suggest parentheses around '&&' within '||' [-Wparentheses]
  197 |         if (mid + 1 == (ll)hulls[i].size() || !in_triangle(a, Point{0LL, 0LL}, b, hulls[i][mid + 1]) && sgn(hulls[i][mid + 1], a, hulls[i][mid]) == -1) {
      |                                               ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 348 KB Output is correct
2 Correct 5 ms 348 KB Output is correct
3 Incorrect 253 ms 2308 KB Output isn't correct
4 Incorrect 656 ms 3696 KB Output isn't correct
5 Incorrect 1327 ms 6760 KB Output isn't correct
6 Incorrect 834 ms 5460 KB Output isn't correct
7 Incorrect 1074 ms 6592 KB Output isn't correct
8 Incorrect 457 ms 5588 KB Output isn't correct
9 Incorrect 520 ms 6348 KB Output isn't correct
10 Incorrect 627 ms 6332 KB Output isn't correct