Submission #885354

# Submission time Handle Problem Language Result Execution time Memory
885354 2023-12-09T14:14:29 Z Koyote Fortune Telling 2 (JOI14_fortune_telling2) C++11
100 / 100
351 ms 105300 KB
#include <bits/stdc++.h>
using namespace std;
 
#define all(x) x.begin(), x.end()
#define sz(x) (int)x.size()

// Merge Sort Tree
template<class T> struct merge_sort_tree {
    int _l, _r, _m;
    vector<T> v;
    merge_sort_tree *lt, *rt;
    merge_sort_tree(int l, int r, vector<T> &e) : _l(l), _r(r), _m((l + r) >> 1) {
        v.resize(r - l + 1), v[0] = e[l];
        if (l == r) lt = rt = nullptr;
        else {
            lt = new merge_sort_tree(_l, _m, e);
            rt = new merge_sort_tree(_m + 1, _r, e);
            vector<T> v1 = lt->v, v2 = rt->v;
            v.clear(), v.reserve(v1.size() + v2.size());
            int i = 0, j = 0;
            while (i < sz(v1) && j < sz(v2)) v.push_back(v1[i] <= v2[j] ? v1[i++] : v2[j++]);
            while (i < sz(v1)) v.push_back(v1[i++]);
            while (j < sz(v2)) v.push_back(v2[j++]);
            v.shrink_to_fit();
        }
    }
    int count(int l, int r, T a, T b) {
        if (a > b) return 0;
        if (l > _r || r < _l) return 0;
        if (_l >= l && _r <= r) return upper_bound(all(v), b) - lower_bound(all(v), a);
        return lt->count(l, r, a, b) + rt->count(l, r, a, b);
    }
};
// End of Merge Sort Tree
 
const int N = 2e5 + 7, N2 = 6e5 + 2, LG = 20;
int n, k, a[N], b[N], t[N], t_idx[N2], max_t_idx[LG][N2];
 
constexpr int lg2(const int x) { return 31 - __builtin_clz(x); }
 
int main() {
    cin.tie(nullptr)->sync_with_stdio(false);
    cin >> n >> k;
    for (int i = 1; i <= n; i++) cin >> a[i] >> b[i];
    for (int i = 1; i <= k; i++) cin >> t[i];
 
    basic_string<int> cmpr; cmpr.reserve(2 * n + k + 1), cmpr += 0;
    for (int i = 1; i <= n; i++) cmpr += a[i], cmpr += b[i];
    for (int i = 1; i <= k; i++) cmpr += t[i];
    sort(all(cmpr)), cmpr.erase(unique(all(cmpr)), cmpr.end());

    auto search = [&](const int v) -> int { return lower_bound(all(cmpr), v) - cmpr.begin(); };
    for (int i = 1; i <= n; i++) a[i] = search(a[i]), b[i] = search(b[i]);
    for (int i = 1; i <= k; i++) t[i] = search(t[i]);
 

    // Sparse table
    for (int i = 1; i <= k; i++) t_idx[t[i]] = i;
    for (int i = 1; i <= sz(cmpr); i++)
        max_t_idx[0][i] = t_idx[i];
    for (int j = 1; j < LG; j++)
        for (int i = 1; i + (1 << j) - 1 <= sz(cmpr); i++)
            max_t_idx[j][i] = max(max_t_idx[j - 1][i], max_t_idx[j - 1][i + (1 << (j - 1))]);
    
    auto query_max_t_idx = [&](int l, int r) -> int {
        int len = lg2(r - l + 1);
        return max(max_t_idx[len][l], max_t_idx[len][r - (1 << len) + 1]);
    };
    // End of Sparse table


    // Merge Sort Tree
    vector<int> vector_t(t, t + k + 1);
    merge_sort_tree<int> mst(0, k + 1, vector_t);

    // Number of i that (l <= i <= r) and (x <= a[i] <= y)
    auto cnt_on_range = [&](int l, int r, int x, int y) -> int {
        return mst.count(l, r, x, y);
    };
    // End of Merge Sort Tree
 
    basic_string<int> ans; ans.reserve(n);
    for (int i = 1; i <= n; i++) {
        if (a[i] == b[i]) { ans += cmpr[a[i]]; continue; }
        bool swapped = (a[i] > b[i] ? (swap(a[i], b[i]), true) : false);
        int last_pos = query_max_t_idx(a[i], b[i] - 1);
        int cnt_flipped = cnt_on_range(last_pos + 1, k, b[i], sz(cmpr));
 
        if (last_pos != 0 || swapped) swap(a[i], b[i]);
        ans += cmpr[~cnt_flipped & 1 ? a[i] : b[i]];
    }
    cout << accumulate(ans.begin(), ans.end(), 0LL) << '\n';
}
# Verdict Execution time Memory Grader output
1 Correct 4 ms 27228 KB Output is correct
2 Correct 4 ms 27228 KB Output is correct
3 Correct 5 ms 29276 KB Output is correct
4 Correct 4 ms 29412 KB Output is correct
5 Correct 4 ms 29448 KB Output is correct
6 Correct 5 ms 29276 KB Output is correct
7 Correct 5 ms 29276 KB Output is correct
8 Correct 4 ms 29276 KB Output is correct
9 Correct 4 ms 29276 KB Output is correct
10 Correct 4 ms 27148 KB Output is correct
11 Correct 4 ms 27228 KB Output is correct
12 Correct 4 ms 27228 KB Output is correct
13 Correct 5 ms 29276 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 27228 KB Output is correct
2 Correct 4 ms 27228 KB Output is correct
3 Correct 5 ms 29276 KB Output is correct
4 Correct 4 ms 29412 KB Output is correct
5 Correct 4 ms 29448 KB Output is correct
6 Correct 5 ms 29276 KB Output is correct
7 Correct 5 ms 29276 KB Output is correct
8 Correct 4 ms 29276 KB Output is correct
9 Correct 4 ms 29276 KB Output is correct
10 Correct 4 ms 27148 KB Output is correct
11 Correct 4 ms 27228 KB Output is correct
12 Correct 4 ms 27228 KB Output is correct
13 Correct 5 ms 29276 KB Output is correct
14 Correct 15 ms 37720 KB Output is correct
15 Correct 29 ms 48536 KB Output is correct
16 Correct 40 ms 53300 KB Output is correct
17 Correct 53 ms 56032 KB Output is correct
18 Correct 53 ms 56028 KB Output is correct
19 Correct 53 ms 55892 KB Output is correct
20 Correct 59 ms 55888 KB Output is correct
21 Correct 51 ms 55944 KB Output is correct
22 Correct 42 ms 56012 KB Output is correct
23 Correct 42 ms 53844 KB Output is correct
24 Correct 44 ms 51796 KB Output is correct
25 Correct 44 ms 55944 KB Output is correct
26 Correct 59 ms 55888 KB Output is correct
27 Correct 75 ms 56024 KB Output is correct
28 Correct 55 ms 55888 KB Output is correct
29 Correct 115 ms 56088 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 27228 KB Output is correct
2 Correct 4 ms 27228 KB Output is correct
3 Correct 5 ms 29276 KB Output is correct
4 Correct 4 ms 29412 KB Output is correct
5 Correct 4 ms 29448 KB Output is correct
6 Correct 5 ms 29276 KB Output is correct
7 Correct 5 ms 29276 KB Output is correct
8 Correct 4 ms 29276 KB Output is correct
9 Correct 4 ms 29276 KB Output is correct
10 Correct 4 ms 27148 KB Output is correct
11 Correct 4 ms 27228 KB Output is correct
12 Correct 4 ms 27228 KB Output is correct
13 Correct 5 ms 29276 KB Output is correct
14 Correct 15 ms 37720 KB Output is correct
15 Correct 29 ms 48536 KB Output is correct
16 Correct 40 ms 53300 KB Output is correct
17 Correct 53 ms 56032 KB Output is correct
18 Correct 53 ms 56028 KB Output is correct
19 Correct 53 ms 55892 KB Output is correct
20 Correct 59 ms 55888 KB Output is correct
21 Correct 51 ms 55944 KB Output is correct
22 Correct 42 ms 56012 KB Output is correct
23 Correct 42 ms 53844 KB Output is correct
24 Correct 44 ms 51796 KB Output is correct
25 Correct 44 ms 55944 KB Output is correct
26 Correct 59 ms 55888 KB Output is correct
27 Correct 75 ms 56024 KB Output is correct
28 Correct 55 ms 55888 KB Output is correct
29 Correct 115 ms 56088 KB Output is correct
30 Correct 134 ms 99104 KB Output is correct
31 Correct 168 ms 101448 KB Output is correct
32 Correct 202 ms 101844 KB Output is correct
33 Correct 288 ms 104760 KB Output is correct
34 Correct 125 ms 98872 KB Output is correct
35 Correct 287 ms 104912 KB Output is correct
36 Correct 291 ms 105300 KB Output is correct
37 Correct 290 ms 104760 KB Output is correct
38 Correct 287 ms 104952 KB Output is correct
39 Correct 314 ms 104884 KB Output is correct
40 Correct 278 ms 104868 KB Output is correct
41 Correct 290 ms 105060 KB Output is correct
42 Correct 314 ms 105032 KB Output is correct
43 Correct 231 ms 104888 KB Output is correct
44 Correct 222 ms 104796 KB Output is correct
45 Correct 234 ms 105068 KB Output is correct
46 Correct 214 ms 102828 KB Output is correct
47 Correct 262 ms 100668 KB Output is correct
48 Correct 351 ms 102876 KB Output is correct
49 Correct 320 ms 102824 KB Output is correct