답안 #884110

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
884110 2023-12-06T15:57:51 Z activedeltorre Cats or Dogs (JOI18_catdog) C++14
38 / 100
3000 ms 15940 KB
//#include "catdog.h"
#include<vector>
#include<algorithm>
#pragma GCC optimize("O3")
using namespace std;

const int nmax = 1e5 + 5;
const int inf = 1e6 + 5;
namespace Tree {
    vector<int> g[nmax];

    int area[nmax];
    int pch[nmax], lastpoz[nmax], p[nmax],pin[nmax], pout[nmax], inp = 1;

    int nodepoz(int node) { return pin[node];}

    namespace Init {
        void preinit(int node, int f) {
            p[node] = f;
            area[node] = 1;
            for(auto x : g[node]) {
                if(x == f) continue;
                preinit(x, node);
                area[node] += area[x];
            }
            return;
        }

        void init(int node, int f) {
            lastpoz[pch[node]] = inp;
            pin[node] = inp++;
            int mx = -1;
            for(auto x : g[node]) {
                if(x == f) continue;
                mx = mx == -1 || area[mx] < area[x]? x : mx;
            }
            if(mx == -1) {pout[node] = inp - 1; return; }
            pch[mx] = pch[node];
            init(mx, node);

            for(auto x : g[node]) {
               if(x == f || x == mx) continue;
               pch[x] = x;
               init(x, node);
            }
        }
    }

    struct Mat {
        int mat[2][2];
        Mat() { mat[0][0] = mat[1][1] = 0, mat[0][1] = mat[1][0] = inf; }
        Mat operator +(const Mat& x) const {
            if(mat[0][0] == 0 && mat[1][1] == 0 && mat[0][1] == inf && mat[1][0] == inf) return x;
            if(x.mat[0][0] == 0 && x.mat[1][1] == 0 && x.mat[0][1] == inf && x.mat[1][0] == inf) return *this;
            Mat rez;
            rez.mat[0][0] = rez.mat[1][1] = inf;

            for(int L = 0; L < 2; L++)
                for(int M1 = 0; M1 < 2; M1++)
                        for(int R = 0; R < 2; R++)
                            rez.mat[L][R] = min(rez.mat[L][R], mat[L][M1] + min(x.mat[M1][R], x.mat[M1 ^ 1][R] + 1));
            return rez;
        }
    };
                Mat ok;


    #define Node Mat
    namespace aint {
        vector<Node> aint;
        int n;
        void init(int _n) {
            n = _n;
            aint.resize(n * 2 + 1);

        }

        void push(int node, int L) {;}
        void upd(int p, Node x, int node, int cl, int cr) {
            if(p < cl || cr < p) return;
            if(cl == cr) { aint[node] = x; return; }
            int mid = cl + cr >> 1;
            push(node, (mid - cl + 1) * 2);
            upd(p, x, node + 1, cl, mid);
            upd(p, x, node + (mid - cl + 1) * 2, mid + 1, cr);
            aint[node] = aint[node + 1] + aint[node + (mid - cl + 1) * 2];
        }
        Node query(int l, int r, int node, int cl, int cr) {
            if(r < cl || cr < l) return Node();
            if(l <= cl && cr <= r) return aint[node];
            int mid = cl + cr >> 1;
            push(node, (mid - cl + 1) * 2);
            return query(l, r, node + 1, cl, mid) + query(l, r, node + (mid - cl + 1) * 2, mid + 1, cr);
        }
        void upd(int p, Node x) { upd(p, x, 1, 1, n); }
        Node query(int l, int r) { return query(l, r, 1, 1, n); }
    };
    #undef Node
    struct SimpleDir {
        int red, blue;
        SimpleDir(int a = 0, int b = 0): red(a), blue(b) {;}
        void operator +=(const SimpleDir& x) {  *this = SimpleDir(red + min(x.red, x.blue + 1), blue + min(x.blue, x.red + 1)); }
        void operator -=(const SimpleDir& x) {  *this = SimpleDir(red - min(x.red, x.blue + 1), blue - min(x.blue, x.red + 1)); }
    };
    SimpleDir overson[nmax], mine[nmax];
    int color[nmax];
    Mat red(int node) {
        Mat curr;
        curr.mat[0][0] = overson[node].red;
        curr.mat[1][1] = inf;
        return curr;
    }
    Mat blue(int node) {
        Mat curr;
        curr.mat[1][1] = overson[node].blue;
        curr.mat[0][0] = inf;
        return curr;
    }
    Mat gol(int node) {
        Mat curr;
        curr.mat[0][0] = overson[node].red;
        curr.mat[1][1] = overson[node].blue;
        return curr;
    }
    void init(int n) {
        aint::init(n);
    }
    int upd(int node) {
        int father = pch[node];
        aint::upd(nodepoz(node), color[node] == 0? gol(node) : color[node] == 1? red(node) : blue(node));

        if(father == 0) { auto R = aint::query(pin[father], lastpoz[father]); return min({R.mat[0][0],R.mat[0][1],R.mat[1][0],R.mat[1][1]});}

        overson[p[father]] -= mine[father];
        auto R = aint::query(pin[father], lastpoz[father]);
        mine[father] = SimpleDir(min(R.mat[0][0], R.mat[0][1]), min(R.mat[1][0], R.mat[1][1]));
        if(color[father] == 1) mine[father].blue = inf;
        if(color[father] == 2) mine[father].red = inf;

        overson[p[father]] += mine[father];

        return upd(p[node]);
    }
}

void initialize(int n, std::vector<int> A, std::vector<int> B) {
    for(int i = 0; i < n - 1; i++) {
        Tree::g[--A[i]].emplace_back(--B[i]);
        Tree::g[B[i]].emplace_back(A[i]);
    }
    Tree::Init::preinit(0, 0);
    Tree::pch[0];
    Tree::Init::init(0, 0);
    Tree::init(n);
    return;
}
int cat(int v) {
    Tree::color[--v] = 1;
  return Tree::upd(v);
}
int dog(int v) {
    Tree::color[--v] = 2;
  return Tree::upd(v);
}
int neighbor(int v) {
    Tree::color[--v] = 0;
  return Tree::upd(v);
}

Compilation message

catdog.cpp: In function 'void Tree::aint::upd(int, Tree::Mat, int, int, int)':
catdog.cpp:82:26: warning: suggest parentheses around '+' inside '>>' [-Wparentheses]
   82 |             int mid = cl + cr >> 1;
      |                       ~~~^~~~
catdog.cpp: In function 'Tree::Mat Tree::aint::query(int, int, int, int, int)':
catdog.cpp:91:26: warning: suggest parentheses around '+' inside '>>' [-Wparentheses]
   91 |             int mid = cl + cr >> 1;
      |                       ~~~^~~~
catdog.cpp: In function 'void initialize(int, std::vector<int>, std::vector<int>)':
catdog.cpp:152:16: warning: statement has no effect [-Wunused-value]
  152 |     Tree::pch[0];
      |     ~~~~~~~~~~~^
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 6492 KB Output is correct
2 Correct 2 ms 6492 KB Output is correct
3 Correct 2 ms 6492 KB Output is correct
4 Correct 3 ms 6492 KB Output is correct
5 Correct 2 ms 6492 KB Output is correct
6 Correct 2 ms 6492 KB Output is correct
7 Correct 2 ms 6488 KB Output is correct
8 Correct 2 ms 6648 KB Output is correct
9 Correct 2 ms 6492 KB Output is correct
10 Correct 2 ms 6488 KB Output is correct
11 Correct 3 ms 6492 KB Output is correct
12 Correct 2 ms 6492 KB Output is correct
13 Correct 2 ms 6488 KB Output is correct
14 Correct 2 ms 6492 KB Output is correct
15 Correct 2 ms 6492 KB Output is correct
16 Correct 2 ms 6492 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 6492 KB Output is correct
2 Correct 2 ms 6492 KB Output is correct
3 Correct 2 ms 6492 KB Output is correct
4 Correct 3 ms 6492 KB Output is correct
5 Correct 2 ms 6492 KB Output is correct
6 Correct 2 ms 6492 KB Output is correct
7 Correct 2 ms 6488 KB Output is correct
8 Correct 2 ms 6648 KB Output is correct
9 Correct 2 ms 6492 KB Output is correct
10 Correct 2 ms 6488 KB Output is correct
11 Correct 3 ms 6492 KB Output is correct
12 Correct 2 ms 6492 KB Output is correct
13 Correct 2 ms 6488 KB Output is correct
14 Correct 2 ms 6492 KB Output is correct
15 Correct 2 ms 6492 KB Output is correct
16 Correct 2 ms 6492 KB Output is correct
17 Correct 3 ms 6748 KB Output is correct
18 Correct 4 ms 6748 KB Output is correct
19 Correct 3 ms 6748 KB Output is correct
20 Correct 2 ms 6556 KB Output is correct
21 Correct 3 ms 6492 KB Output is correct
22 Correct 2 ms 6492 KB Output is correct
23 Correct 4 ms 6748 KB Output is correct
24 Correct 4 ms 6748 KB Output is correct
25 Correct 3 ms 6492 KB Output is correct
26 Correct 2 ms 6492 KB Output is correct
27 Correct 4 ms 6492 KB Output is correct
28 Correct 4 ms 7044 KB Output is correct
29 Correct 3 ms 6748 KB Output is correct
30 Correct 2 ms 6492 KB Output is correct
31 Correct 3 ms 6748 KB Output is correct
32 Correct 2 ms 6492 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 6492 KB Output is correct
2 Correct 2 ms 6492 KB Output is correct
3 Correct 2 ms 6492 KB Output is correct
4 Correct 3 ms 6492 KB Output is correct
5 Correct 2 ms 6492 KB Output is correct
6 Correct 2 ms 6492 KB Output is correct
7 Correct 2 ms 6488 KB Output is correct
8 Correct 2 ms 6648 KB Output is correct
9 Correct 2 ms 6492 KB Output is correct
10 Correct 2 ms 6488 KB Output is correct
11 Correct 3 ms 6492 KB Output is correct
12 Correct 2 ms 6492 KB Output is correct
13 Correct 2 ms 6488 KB Output is correct
14 Correct 2 ms 6492 KB Output is correct
15 Correct 2 ms 6492 KB Output is correct
16 Correct 2 ms 6492 KB Output is correct
17 Correct 3 ms 6748 KB Output is correct
18 Correct 4 ms 6748 KB Output is correct
19 Correct 3 ms 6748 KB Output is correct
20 Correct 2 ms 6556 KB Output is correct
21 Correct 3 ms 6492 KB Output is correct
22 Correct 2 ms 6492 KB Output is correct
23 Correct 4 ms 6748 KB Output is correct
24 Correct 4 ms 6748 KB Output is correct
25 Correct 3 ms 6492 KB Output is correct
26 Correct 2 ms 6492 KB Output is correct
27 Correct 4 ms 6492 KB Output is correct
28 Correct 4 ms 7044 KB Output is correct
29 Correct 3 ms 6748 KB Output is correct
30 Correct 2 ms 6492 KB Output is correct
31 Correct 3 ms 6748 KB Output is correct
32 Correct 2 ms 6492 KB Output is correct
33 Correct 1311 ms 11716 KB Output is correct
34 Correct 298 ms 11864 KB Output is correct
35 Correct 776 ms 10316 KB Output is correct
36 Correct 2206 ms 15012 KB Output is correct
37 Correct 17 ms 9052 KB Output is correct
38 Correct 2528 ms 15852 KB Output is correct
39 Correct 2392 ms 15856 KB Output is correct
40 Correct 2574 ms 15912 KB Output is correct
41 Correct 2808 ms 15860 KB Output is correct
42 Correct 1940 ms 15940 KB Output is correct
43 Correct 1749 ms 15940 KB Output is correct
44 Correct 1480 ms 15860 KB Output is correct
45 Correct 1958 ms 15864 KB Output is correct
46 Correct 1994 ms 15860 KB Output is correct
47 Correct 2272 ms 15940 KB Output is correct
48 Correct 84 ms 13212 KB Output is correct
49 Correct 88 ms 14892 KB Output is correct
50 Correct 41 ms 8636 KB Output is correct
51 Correct 41 ms 9912 KB Output is correct
52 Correct 16 ms 8280 KB Output is correct
53 Correct 905 ms 14680 KB Output is correct
54 Correct 610 ms 10236 KB Output is correct
55 Correct 1564 ms 13132 KB Output is correct
56 Correct 1093 ms 11004 KB Output is correct
57 Correct 1144 ms 14248 KB Output is correct
58 Correct 16 ms 10200 KB Output is correct
59 Correct 36 ms 9716 KB Output is correct
60 Correct 78 ms 13904 KB Output is correct
61 Correct 84 ms 14396 KB Output is correct
62 Correct 57 ms 12612 KB Output is correct
63 Execution timed out 3040 ms 12880 KB Time limit exceeded
64 Halted 0 ms 0 KB -