답안 #884108

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
884108 2023-12-06T15:56:31 Z activedeltorre Cats or Dogs (JOI18_catdog) C++14
38 / 100
3000 ms 15888 KB
//#include "catdog.h"
#include <bits/stdc++.h>
#pragma GCC optimize("O3")
using namespace std;

const int nmax = 1e5 + 5;
const int inf = 1e6 + 5;
namespace Tree {
    vector<int> g[nmax];

    int area[nmax];
    int pch[nmax], lastpoz[nmax], p[nmax],pin[nmax], pout[nmax], inp = 1;

    int nodepoz(int node) { return pin[node];}

    namespace Init {
        void preinit(int node, int f) {
            p[node] = f;
            area[node] = 1;
            for(auto x : g[node]) {
                if(x == f) continue;
                preinit(x, node);
                area[node] += area[x];
            }
            return;
        }

        void init(int node, int f) {
            lastpoz[pch[node]] = inp;
            pin[node] = inp++;
            int mx = -1;
            for(auto x : g[node]) {
                if(x == f) continue;
                mx = mx == -1 || area[mx] < area[x]? x : mx;
            }
            if(mx == -1) {pout[node] = inp - 1; return; }
            pch[mx] = pch[node];
            init(mx, node);

            for(auto x : g[node]) {
               if(x == f || x == mx) continue;
               pch[x] = x;
               init(x, node);
            }
        }
    }

    struct Mat {
        int mat[2][2];
        Mat() { mat[0][0] = mat[1][1] = 0, mat[0][1] = mat[1][0] = inf; }
        Mat operator +(const Mat& x) const {
            if(mat[0][0] == 0 && mat[1][1] == 0 && mat[0][1] == inf && mat[1][0] == inf) return x;
            if(x.mat[0][0] == 0 && x.mat[1][1] == 0 && x.mat[0][1] == inf && x.mat[1][0] == inf) return *this;
            Mat rez;
            rez.mat[0][0] = rez.mat[1][1] = inf;

            for(int L = 0; L < 2; L++)
                for(int M1 = 0; M1 < 2; M1++)
                        for(int R = 0; R < 2; R++)
                            rez.mat[L][R] = min(rez.mat[L][R], mat[L][M1] + min(x.mat[M1][R], x.mat[M1 ^ 1][R] + 1));
            return rez;
        }
    };
                Mat ok;


    #define Node Mat
    namespace aint {
        vector<Node> aint;
        int n;
        void init(int _n) {
            n = _n;
            aint.resize(n * 2 + 1);

        }

        void push(int node, int L) {;}
        void upd(int p, Node x, int node, int cl, int cr) {
            if(p < cl || cr < p) return;
            if(cl == cr) { aint[node] = x; return; }
            int mid = cl + cr >> 1;
            push(node, (mid - cl + 1) * 2);
            upd(p, x, node + 1, cl, mid);
            upd(p, x, node + (mid - cl + 1) * 2, mid + 1, cr);
            aint[node] = aint[node + 1] + aint[node + (mid - cl + 1) * 2];
        }
        Node query(int l, int r, int node, int cl, int cr) {
            if(r < cl || cr < l) return Node();
            if(l <= cl && cr <= r) return aint[node];
            int mid = cl + cr >> 1;
            push(node, (mid - cl + 1) * 2);
            return query(l, r, node + 1, cl, mid) + query(l, r, node + (mid - cl + 1) * 2, mid + 1, cr);
        }
        void upd(int p, Node x) { upd(p, x, 1, 1, n); }
        Node query(int l, int r) { return query(l, r, 1, 1, n); }
    };
    #undef Node
    struct SimpleDir {
        int red, blue;
        SimpleDir(int a = 0, int b = 0): red(a), blue(b) {;}
        void operator +=(const SimpleDir& x) {  *this = SimpleDir(red + min(x.red, x.blue + 1), blue + min(x.blue, x.red + 1)); }
        void operator -=(const SimpleDir& x) {  *this = SimpleDir(red - min(x.red, x.blue + 1), blue - min(x.blue, x.red + 1)); }
    };
    SimpleDir overson[nmax], mine[nmax];
    int color[nmax];
    Mat red(int node) {
        Mat curr;
        curr.mat[0][0] = overson[node].red;
        curr.mat[1][1] = inf;
        return curr;
    }
    Mat blue(int node) {
        Mat curr;
        curr.mat[1][1] = overson[node].blue;
        curr.mat[0][0] = inf;
        return curr;
    }
    Mat gol(int node) {
        Mat curr;
        curr.mat[0][0] = overson[node].red;
        curr.mat[1][1] = overson[node].blue;
        return curr;
    }
    void init(int n) {
        aint::init(n);
    }
    int upd(int node) {
        int father = pch[node];
        aint::upd(nodepoz(node), color[node] == 0? gol(node) : color[node] == 1? red(node) : blue(node));

        if(father == 0) { auto R = aint::query(pin[father], lastpoz[father]); return min({R.mat[0][0],R.mat[0][1],R.mat[1][0],R.mat[1][1]});}

        overson[p[father]] -= mine[father];
        auto R = aint::query(pin[father], lastpoz[father]);
        mine[father] = SimpleDir(min(R.mat[0][0], R.mat[0][1]), min(R.mat[1][0], R.mat[1][1]));
        if(color[father] == 1) mine[father].blue = inf;
        if(color[father] == 2) mine[father].red = inf;

        overson[p[father]] += mine[father];

        return upd(p[node]);
    }
}

void initialize(int n, std::vector<int> A, std::vector<int> B) {
    for(int i = 0; i < n - 1; i++) {
        Tree::g[--A[i]].emplace_back(--B[i]);
        Tree::g[B[i]].emplace_back(A[i]);
    }
    Tree::Init::preinit(0, 0);
    Tree::pch[0];
    Tree::Init::init(0, 0);
    Tree::init(n);
    return;
}
int cat(int v) {
    Tree::color[--v] = 1;
  return Tree::upd(v);
}
int dog(int v) {
    Tree::color[--v] = 2;
  return Tree::upd(v);
}
int neighbor(int v) {
    Tree::color[--v] = 0;
  return Tree::upd(v);
}

Compilation message

catdog.cpp: In function 'void Tree::aint::upd(int, Tree::Mat, int, int, int)':
catdog.cpp:81:26: warning: suggest parentheses around '+' inside '>>' [-Wparentheses]
   81 |             int mid = cl + cr >> 1;
      |                       ~~~^~~~
catdog.cpp: In function 'Tree::Mat Tree::aint::query(int, int, int, int, int)':
catdog.cpp:90:26: warning: suggest parentheses around '+' inside '>>' [-Wparentheses]
   90 |             int mid = cl + cr >> 1;
      |                       ~~~^~~~
catdog.cpp: In function 'void initialize(int, std::vector<int>, std::vector<int>)':
catdog.cpp:151:16: warning: statement has no effect [-Wunused-value]
  151 |     Tree::pch[0];
      |     ~~~~~~~~~~~^
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 6744 KB Output is correct
2 Correct 1 ms 6748 KB Output is correct
3 Correct 2 ms 6748 KB Output is correct
4 Correct 2 ms 6748 KB Output is correct
5 Correct 2 ms 6900 KB Output is correct
6 Correct 2 ms 6900 KB Output is correct
7 Correct 2 ms 6748 KB Output is correct
8 Correct 2 ms 6748 KB Output is correct
9 Correct 1 ms 6748 KB Output is correct
10 Correct 1 ms 6748 KB Output is correct
11 Correct 1 ms 6748 KB Output is correct
12 Correct 1 ms 6748 KB Output is correct
13 Correct 1 ms 6748 KB Output is correct
14 Correct 2 ms 6748 KB Output is correct
15 Correct 1 ms 6748 KB Output is correct
16 Correct 2 ms 6748 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 6744 KB Output is correct
2 Correct 1 ms 6748 KB Output is correct
3 Correct 2 ms 6748 KB Output is correct
4 Correct 2 ms 6748 KB Output is correct
5 Correct 2 ms 6900 KB Output is correct
6 Correct 2 ms 6900 KB Output is correct
7 Correct 2 ms 6748 KB Output is correct
8 Correct 2 ms 6748 KB Output is correct
9 Correct 1 ms 6748 KB Output is correct
10 Correct 1 ms 6748 KB Output is correct
11 Correct 1 ms 6748 KB Output is correct
12 Correct 1 ms 6748 KB Output is correct
13 Correct 1 ms 6748 KB Output is correct
14 Correct 2 ms 6748 KB Output is correct
15 Correct 1 ms 6748 KB Output is correct
16 Correct 2 ms 6748 KB Output is correct
17 Correct 3 ms 6744 KB Output is correct
18 Correct 3 ms 6748 KB Output is correct
19 Correct 3 ms 6748 KB Output is correct
20 Correct 1 ms 6748 KB Output is correct
21 Correct 2 ms 6748 KB Output is correct
22 Correct 2 ms 6748 KB Output is correct
23 Correct 4 ms 6748 KB Output is correct
24 Correct 4 ms 6748 KB Output is correct
25 Correct 3 ms 6748 KB Output is correct
26 Correct 2 ms 6956 KB Output is correct
27 Correct 3 ms 6748 KB Output is correct
28 Correct 3 ms 7004 KB Output is correct
29 Correct 3 ms 7004 KB Output is correct
30 Correct 2 ms 6748 KB Output is correct
31 Correct 2 ms 6748 KB Output is correct
32 Correct 3 ms 6748 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 6744 KB Output is correct
2 Correct 1 ms 6748 KB Output is correct
3 Correct 2 ms 6748 KB Output is correct
4 Correct 2 ms 6748 KB Output is correct
5 Correct 2 ms 6900 KB Output is correct
6 Correct 2 ms 6900 KB Output is correct
7 Correct 2 ms 6748 KB Output is correct
8 Correct 2 ms 6748 KB Output is correct
9 Correct 1 ms 6748 KB Output is correct
10 Correct 1 ms 6748 KB Output is correct
11 Correct 1 ms 6748 KB Output is correct
12 Correct 1 ms 6748 KB Output is correct
13 Correct 1 ms 6748 KB Output is correct
14 Correct 2 ms 6748 KB Output is correct
15 Correct 1 ms 6748 KB Output is correct
16 Correct 2 ms 6748 KB Output is correct
17 Correct 3 ms 6744 KB Output is correct
18 Correct 3 ms 6748 KB Output is correct
19 Correct 3 ms 6748 KB Output is correct
20 Correct 1 ms 6748 KB Output is correct
21 Correct 2 ms 6748 KB Output is correct
22 Correct 2 ms 6748 KB Output is correct
23 Correct 4 ms 6748 KB Output is correct
24 Correct 4 ms 6748 KB Output is correct
25 Correct 3 ms 6748 KB Output is correct
26 Correct 2 ms 6956 KB Output is correct
27 Correct 3 ms 6748 KB Output is correct
28 Correct 3 ms 7004 KB Output is correct
29 Correct 3 ms 7004 KB Output is correct
30 Correct 2 ms 6748 KB Output is correct
31 Correct 2 ms 6748 KB Output is correct
32 Correct 3 ms 6748 KB Output is correct
33 Correct 1296 ms 11716 KB Output is correct
34 Correct 296 ms 12120 KB Output is correct
35 Correct 784 ms 10620 KB Output is correct
36 Correct 2265 ms 15056 KB Output is correct
37 Correct 17 ms 9564 KB Output is correct
38 Correct 2479 ms 15872 KB Output is correct
39 Correct 2437 ms 15880 KB Output is correct
40 Correct 2581 ms 15876 KB Output is correct
41 Correct 2725 ms 15880 KB Output is correct
42 Correct 1900 ms 15888 KB Output is correct
43 Correct 1748 ms 15876 KB Output is correct
44 Correct 1533 ms 15876 KB Output is correct
45 Correct 1959 ms 15888 KB Output is correct
46 Correct 1958 ms 15872 KB Output is correct
47 Correct 2256 ms 15876 KB Output is correct
48 Correct 86 ms 13432 KB Output is correct
49 Correct 90 ms 14936 KB Output is correct
50 Correct 35 ms 8788 KB Output is correct
51 Correct 42 ms 10056 KB Output is correct
52 Correct 16 ms 8536 KB Output is correct
53 Correct 906 ms 14868 KB Output is correct
54 Correct 600 ms 10512 KB Output is correct
55 Correct 1620 ms 13236 KB Output is correct
56 Correct 1124 ms 11228 KB Output is correct
57 Correct 1141 ms 14928 KB Output is correct
58 Correct 16 ms 10200 KB Output is correct
59 Correct 41 ms 9972 KB Output is correct
60 Correct 90 ms 14052 KB Output is correct
61 Correct 83 ms 14396 KB Output is correct
62 Correct 56 ms 12824 KB Output is correct
63 Execution timed out 3012 ms 13144 KB Time limit exceeded
64 Halted 0 ms 0 KB -