Submission #879179

# Submission time Handle Problem Language Result Execution time Memory
879179 2023-11-26T17:13:54 Z RedGrey1993 Burza (COCI16_burza) C++17
160 / 160
364 ms 1112 KB
#include <bits/stdc++.h>
 
using namespace std;
 
template <typename T1, typename T2> istream &operator>>(istream &is, const pair<T1, T2> &pa) { is >> pa.first >> pa.second; return is; }
template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << "(" << pa.first << "," << pa.second << ")"; return os; }
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec) { os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp) { os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }
template <typename T> void resize_array(vector<T> &vec, int len) { vec.resize(len); }
template <typename T, typename... Args> void resize_array(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) resize_array(v, args...); }
template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; }
mt19937 mrand(random_device{}());
int rnd(int x) { return mrand() % x; }
 
template <unsigned int MOD>
class ModInt {
public:
    ModInt(unsigned long long _v = 0) { set_v((_v % MOD + MOD)); }
    explicit operator bool() const { return val != 0; }
    ModInt operator-() const { return ModInt() - *this; }
    ModInt operator+(const ModInt &r) const { return ModInt().set_v(val + r.val); }
    ModInt operator-(const ModInt &r) const { return ModInt().set_v(val + MOD - r.val); }
    ModInt operator*(const ModInt &r) const { return ModInt().set_v((unsigned int)((unsigned long long)(val)*r.val % MOD)); }
    ModInt operator/(const ModInt &r) const { return *this * r.inv(); }
    ModInt &operator+=(const ModInt &r) { return *this = *this + r; }
    ModInt &operator-=(const ModInt &r) { return *this = *this - r; }
    ModInt &operator*=(const ModInt &r) { return *this = *this * r; }
    ModInt &operator/=(const ModInt &r) { return *this = *this / r; }
    // ModInt &operator=(unsigned long long _v) { set_v((_v % MOD + MOD)); return *this; }
    unsigned int operator=(unsigned long long _v) { set_v((_v % MOD + MOD)); return val; }
    bool operator==(const ModInt &r) const { return val == r.val; }
    bool operator!=(const ModInt &r) const { return val != r.val; }
    ModInt pow(long long n) const {
        ModInt x = *this, r = 1;
        while (n) {
            if (n & 1)
                r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    ModInt inv() const { return pow(MOD - 2); }
    unsigned int get_val() { return val; }
    friend ostream &operator<<(ostream &os, const ModInt &r) { return os << r.val; }
    friend istream &operator>>(istream &is, ModInt &r) { return is >> r.val; }
private:
    unsigned int val;
    ModInt &set_v(unsigned int _v) {
        val = (_v < MOD) ? _v : _v - MOD;
        return *this;
    }
};
constexpr unsigned int mod = 1e9+7;
using Mint = ModInt<mod>;
 
#define rep(i, a, n) for (int i = a; i < (n); i++)
#define per(i, a, n) for (int i = (n)-1; i >= a; i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(), (x).end()
#define fi first
#define se second
#define sz(x) ((int)(x).size())
typedef vector<int> vi;
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef pair<int, int> pii;
typedef double db;
#if DEBUG
#define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl;
#else
#define dbg(x)
#endif
 
using Mint2 = ModInt<mod-1>;
class Solution {
    struct Line {
        long long m, c;
        long long Eval(long long x) { return m * x + c; }
        long double IntersectX(Line l) { return (long double)(c - l.c) / (l.m - m); }
    };

public:
    void Solve() {
        int n,k;
        while(cin>>n>>k) {
            vector<vi> edges(n);

            int u,v;
            rep(i,1,n) {
                cin>>u>>v;
                u--; v--;
                edges[u].emplace_back(v);
                edges[v].emplace_back(u);
            }

            if (k*k >= n - 1) {
                cout << "DA" << endl;
                continue;
            }

            map<int, int> leaf_label;
            vector<vi> cutoff_cover(n);
            vector<vi> depth_nodes(k+1);
            function<void(int,int,int)> dfs = [&] (int par, int cur, int depth) {
                depth_nodes[depth].emplace_back(cur);
                if (depth == k) {
                    leaf_label[cur] = leaf_label.size() + 1;
                    cutoff_cover[cur] = {cur};
                    return;
                }

                for (auto nxt : edges[cur]) {
                    if (nxt != par) {
                        dfs(cur, nxt, depth + 1);
                        cutoff_cover[cur].insert(cutoff_cover[cur].end(), all(cutoff_cover[nxt]));
                    }
                }
            };
            dfs(-1, 0, 0);

            vi max_cover(1<<k);
            rep(mask, 1, sz(max_cover)) {
                int &cur_max_cover = max_cover[mask];
                rep(d, 1, k+1) {
                    if ((1<<(d-1)) & mask) {
                        for (int node : depth_nodes[d]) {
                            if (cutoff_cover[node].empty())  continue;
                            if (max_cover[(1<<(d-1)) ^ mask] + 1 >= leaf_label[cutoff_cover[node].front()]) {
                                cur_max_cover = max(cur_max_cover, leaf_label[cutoff_cover[node].back()]);
                            }
                        }
                    }
                }
            }

            if (max_cover.back() == leaf_label.size()) {
                cout << "DA" << endl;
            } else {
                cout << "NE" << endl;
            }
        }
    }
private:
};
 
// #define USACO 1
void set_io(const string &name = "") {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
#if FILE_IO || USACO
    if (!name.empty()) {
        freopen((name + ".in").c_str(), "r", stdin);
        freopen((name + ".out").c_str(), "w", stdout);
    }
#endif
}

int main() {
#if USACO
    set_io("time");
#else
    set_io("input");
#endif
    Solution().Solve();

    return 0;
}


Compilation message

burza.cpp: In member function 'void Solution::Solve()':
burza.cpp:148:34: warning: comparison of integer expressions of different signedness: '__gnu_cxx::__alloc_traits<std::allocator<int>, int>::value_type' {aka 'int'} and 'std::map<int, int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  148 |             if (max_cover.back() == leaf_label.size()) {
      |                 ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 35 ms 348 KB Output is correct
2 Correct 360 ms 1108 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 0 ms 356 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 314 ms 1112 KB Output is correct
2 Correct 341 ms 1024 KB Output is correct
3 Correct 0 ms 456 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 329 ms 860 KB Output is correct
6 Correct 1 ms 344 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 345 ms 1024 KB Output is correct
2 Correct 321 ms 856 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 460 KB Output is correct
5 Correct 1 ms 600 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 86 ms 640 KB Output is correct
2 Correct 347 ms 860 KB Output is correct
3 Correct 1 ms 344 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 292 ms 860 KB Output is correct
2 Correct 340 ms 1108 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 341 ms 1016 KB Output is correct
2 Correct 313 ms 1024 KB Output is correct
3 Correct 1 ms 344 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 344 ms 1028 KB Output is correct
2 Correct 329 ms 1024 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 1 ms 344 KB Output is correct
5 Correct 324 ms 1028 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 72 ms 604 KB Output is correct
2 Correct 360 ms 1020 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 1 ms 344 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 28 ms 348 KB Output is correct
2 Correct 364 ms 1024 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 132 ms 760 KB Output is correct
2 Correct 348 ms 856 KB Output is correct
3 Correct 1 ms 344 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 140 ms 604 KB Output is correct
6 Correct 0 ms 344 KB Output is correct