Submission #878447

# Submission time Handle Problem Language Result Execution time Memory
878447 2023-11-24T11:27:01 Z sleepntsheep Werewolf (IOI18_werewolf) C++17
100 / 100
839 ms 163528 KB
#define SHINLENA2

#ifndef SHINLENA
#include "werewolf.h"
#endif 


#include <iostream>
#include <algorithm>
#include <numeric>
#include <vector>
#include <cstddef>
#include <cassert>
using namespace std;
#define NN 200000


struct kruskal_reconstruction_tree
{
    vector<int> p, tin, tout;
    int l, n0;
    vector<vector<int>> g;
    vector<pair<int, int>> ch;

    kruskal_reconstruction_tree(int n, int n0) : p(n), tin(n), tout(n), l(n0), n0(n0), g(n), ch(n, {-1,-1})
    {
        iota(p.begin(), p.end(), 0);
    }

    int find(int x)
    {
        return x == p[x] ? x : p[x] = find(p[x]);
    }

    int unite(int x, int y)
    {
        x = find(x); y = find(y);
        if (x == y) return 0;
        ch[p[x] = p[y] = ++l] = {x, y};
        return 1;
    }

    int timer = 0;
    void dfs(int u)
    {
        tin[u] = timer++;
        for (auto v : {ch[u].first, ch[u].second}) if (v != -1) dfs(v);
        tout[u] = timer - 1;
    }

    void tour()
    {
        for (int i = l +1; i--;) if (!tin[i]) dfs(i);
    }
};


vector<int> t[NN<<3];

void add(int v, int l, int r, int p, int k)
{
    t[v].push_back(k);
    if (l == r) return;
    if (p <= (l+r)/2) add(2*v+1, l, (l+r)/2, p, k);
    else add(2*v+2, (l+r)/2+1, r, p, k);
}

int qry(int v, int l, int r, int x, int y, int k)
{
    if (r < x || y < l) return 1e9;
    if (x <= l && r <= y)
    {
        auto it = lower_bound(t[v].begin(), t[v].end(), k);
        return it == t[v].end() ? 1e9 : *it;
    }
    return min(qry(2*v+1, l, (l+r)/2, x, y, k), qry(2*v+2, (l+r)/2+1, r, x, y, k));
}

vector<int> check_validity(int N, vector<int> X, vector<int> Y,
        vector<int> S, vector<int> E,
        vector<int> L, vector<int> R) {
    int M = X.size();
    kruskal_reconstruction_tree k[2] {kruskal_reconstruction_tree(N+M, N-1), kruskal_reconstruction_tree(N+M, N-1)};

    int Q = S.size();
    vector<int> A(Q);
    vector<vector<int>> g(N);

    for (int i = 0; i < M; ++i) g[X[i]].push_back(Y[i]), g[Y[i]].push_back(X[i]);

    /* build krt */
    vector<int> rtl(Q), rtr(Q);
    {
        vector<vector<int>> byl(N), byr(N);
        for (int i = 0; i < Q; ++i) byl[L[i]].push_back(i), byr[R[i]].push_back(i);
        for (int i = N; i--;)
        {
            for (auto v : g[i]) if (v >= i) k[0].unite(v, i);
            for (auto j : byl[i]) rtl[j] = k[0].find(S[j]);
        }
        for (int i = 0; i < N; ++i)
        {
            for (auto v : g[i]) if (v <= i) k[1].unite(v, i);
            for (auto j : byr[i]) rtr[j] = k[1].find(E[j]);
        }
    }

    for (int i : {0, 1}) k[i].tour();

    int LL = k[0].timer - 1;
    /* build merge sort tree */
    {
        vector<pair<int, int>> ins;
        for (int i = 0; i < N; ++i)
            ins.emplace_back(k[1].tin[i], k[0].tin[i]);
        sort(ins.begin(), ins.end());
        for (auto [x, y] : ins) add(0, 0, LL, y, x);
    }
    
    for (int i = 0; i < Q; ++i)
    {
        A[i] = qry(0, 0, LL, k[0].tin[rtl[i]], k[0].tout[rtl[i]], k[1].tin[rtr[i]]) <= k[1].tout[rtr[i]];
    }
 
    return A;
}
 
#ifdef SHINLENA
int main()
{
    int n,m,q;
    cin>>n>>m>>q;
    vector<int>x,y,s,e,l,r;
    for (int u,v,i=0;i<m;++i)cin>>u>>v, x.push_back(u), y.push_back(v);
    
    for (int a,b,c,d,i=0;i<q;++i)
    {
        cin>>a>>b>>c>>d;
        s.push_back(a);
        e.push_back(b);
        l.push_back(c);
        r.push_back(d);
        
    }
    auto A = check_validity(n,x,y,s,e,l,r);
    for (auto x : A) cout << x << endl;
    return 0;
}
 
#endif
 
/*
 
6 6 3
5 1
1 3
1 3
3 4
3 0
5 2
4 2 1 2
4 2 2 2
5 4 3 4
 
*/

# Verdict Execution time Memory Grader output
1 Correct 14 ms 37980 KB Output is correct
2 Correct 9 ms 37980 KB Output is correct
3 Correct 9 ms 37980 KB Output is correct
4 Correct 9 ms 37996 KB Output is correct
5 Correct 9 ms 37980 KB Output is correct
6 Correct 8 ms 37980 KB Output is correct
7 Correct 9 ms 37976 KB Output is correct
8 Correct 8 ms 37976 KB Output is correct
9 Correct 9 ms 37980 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 14 ms 37980 KB Output is correct
2 Correct 9 ms 37980 KB Output is correct
3 Correct 9 ms 37980 KB Output is correct
4 Correct 9 ms 37996 KB Output is correct
5 Correct 9 ms 37980 KB Output is correct
6 Correct 8 ms 37980 KB Output is correct
7 Correct 9 ms 37976 KB Output is correct
8 Correct 8 ms 37976 KB Output is correct
9 Correct 9 ms 37980 KB Output is correct
10 Correct 14 ms 39420 KB Output is correct
11 Correct 17 ms 39256 KB Output is correct
12 Correct 13 ms 39256 KB Output is correct
13 Correct 14 ms 39516 KB Output is correct
14 Correct 16 ms 39516 KB Output is correct
15 Correct 14 ms 39740 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 529 ms 127404 KB Output is correct
2 Correct 608 ms 139904 KB Output is correct
3 Correct 559 ms 137132 KB Output is correct
4 Correct 509 ms 136108 KB Output is correct
5 Correct 505 ms 136108 KB Output is correct
6 Correct 521 ms 136104 KB Output is correct
7 Correct 449 ms 135752 KB Output is correct
8 Correct 581 ms 139288 KB Output is correct
9 Correct 439 ms 137136 KB Output is correct
10 Correct 442 ms 136364 KB Output is correct
11 Correct 446 ms 135964 KB Output is correct
12 Correct 433 ms 136296 KB Output is correct
13 Correct 490 ms 136464 KB Output is correct
14 Correct 481 ms 136456 KB Output is correct
15 Correct 483 ms 136264 KB Output is correct
16 Correct 491 ms 136500 KB Output is correct
17 Correct 443 ms 136052 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 14 ms 37980 KB Output is correct
2 Correct 9 ms 37980 KB Output is correct
3 Correct 9 ms 37980 KB Output is correct
4 Correct 9 ms 37996 KB Output is correct
5 Correct 9 ms 37980 KB Output is correct
6 Correct 8 ms 37980 KB Output is correct
7 Correct 9 ms 37976 KB Output is correct
8 Correct 8 ms 37976 KB Output is correct
9 Correct 9 ms 37980 KB Output is correct
10 Correct 14 ms 39420 KB Output is correct
11 Correct 17 ms 39256 KB Output is correct
12 Correct 13 ms 39256 KB Output is correct
13 Correct 14 ms 39516 KB Output is correct
14 Correct 16 ms 39516 KB Output is correct
15 Correct 14 ms 39740 KB Output is correct
16 Correct 529 ms 127404 KB Output is correct
17 Correct 608 ms 139904 KB Output is correct
18 Correct 559 ms 137132 KB Output is correct
19 Correct 509 ms 136108 KB Output is correct
20 Correct 505 ms 136108 KB Output is correct
21 Correct 521 ms 136104 KB Output is correct
22 Correct 449 ms 135752 KB Output is correct
23 Correct 581 ms 139288 KB Output is correct
24 Correct 439 ms 137136 KB Output is correct
25 Correct 442 ms 136364 KB Output is correct
26 Correct 446 ms 135964 KB Output is correct
27 Correct 433 ms 136296 KB Output is correct
28 Correct 490 ms 136464 KB Output is correct
29 Correct 481 ms 136456 KB Output is correct
30 Correct 483 ms 136264 KB Output is correct
31 Correct 491 ms 136500 KB Output is correct
32 Correct 443 ms 136052 KB Output is correct
33 Correct 698 ms 137624 KB Output is correct
34 Correct 231 ms 107748 KB Output is correct
35 Correct 818 ms 142668 KB Output is correct
36 Correct 635 ms 137112 KB Output is correct
37 Correct 782 ms 141148 KB Output is correct
38 Correct 689 ms 138156 KB Output is correct
39 Correct 611 ms 144036 KB Output is correct
40 Correct 601 ms 162192 KB Output is correct
41 Correct 682 ms 139948 KB Output is correct
42 Correct 540 ms 137104 KB Output is correct
43 Correct 839 ms 152016 KB Output is correct
44 Correct 754 ms 140964 KB Output is correct
45 Correct 551 ms 145068 KB Output is correct
46 Correct 574 ms 144876 KB Output is correct
47 Correct 497 ms 137044 KB Output is correct
48 Correct 498 ms 136588 KB Output is correct
49 Correct 538 ms 137220 KB Output is correct
50 Correct 506 ms 136740 KB Output is correct
51 Correct 534 ms 163420 KB Output is correct
52 Correct 521 ms 163528 KB Output is correct