#include <bits/stdc++.h>
using namespace std;
#define int long long
struct grup
{
vector<int>noduri_alive;
int nr_oameni;
multiset<pair<int,int>> edges;
};
int n,m,s[200005];
vector<pair<int,int>>G[200005];
int t[200005],sz[200005];
grup g[200005];
bool sol_finala[200005];
bool cmp(int x,int y)
{
if (g[x].nr_oameni != g[y].nr_oameni)
return g[x].nr_oameni < g[y].nr_oameni;
return x < y;
}
multiset<int,decltype(cmp)*>st(cmp);
int ancestor(int nod)
{
while (nod != t[nod])
nod = t[nod];
return nod;
}
void join(int x,int y)
{
if (sz[x] < sz[y])
swap(x,y);
sz[x] += sz[y];
t[y] = x;
g[x].nr_oameni += g[y].nr_oameni;
for (auto it : g[y].noduri_alive)
g[x].noduri_alive.push_back(it);
for (auto it : g[y].edges)
g[x].edges.insert(it);
g[y].nr_oameni = 0;
g[y].noduri_alive.clear();
g[y].edges.clear();
st.insert(x);
}
signed main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
cin >> n >> m;
for (int i = 1; i <= n; i++)
cin >> s[i];
for (int i = 1; i <= m; i++)
{
int x,y;
cin >> x >> y;
G[x].push_back({s[y],y});
G[y].push_back({s[x],x});
}
for (int i = 1; i <= n; i++)
{
t[i] = i;
sz[i] = 1;
g[i].noduri_alive = {i};
g[i].nr_oameni = s[i];
for (auto it : G[i])
g[i].edges.insert(it);
st.insert(i);
}
while (st.size() >= 2)
{
/*for (auto it : st)
{
cout << it << ' ' << g[it].nr_oameni << endl;
for (auto itt : g[it].noduri_alive)
cout << itt << ' ';
cout << endl;
for (auto itt : g[it].edges)
cout << itt.first << ' ' << itt.second << endl;
cout << endl;
}
cout << endl;*/
int nod = *st.begin();
//cout << nod << endl;
while (true)
{
pair<int,int>aux = *(g[nod].edges.begin());
if (ancestor(aux.second) == nod)
g[nod].edges.erase(g[nod].edges.find(aux));
else
break;
}
pair<int,int>aux = *(g[nod].edges.begin());
//cout << aux.first << ' ' << aux.second << endl;
g[nod].edges.erase(g[nod].edges.begin());
if (aux.first > g[nod].nr_oameni)
{
//cout << "caz1 " << nod << endl;
st.erase(st.find(nod));
g[nod].noduri_alive.clear();
}
else
{
//cout << "caz2 " << nod << ' ';
int x = aux.second;
x = ancestor(x);
//cout << x << endl;
st.erase(st.find(nod));
//cout << st.size() << endl;
if (g[x].noduri_alive.size() != 0)
st.erase(st.find(x));
join(nod,x);
}
}
for (auto it : st)
{
for (auto x : g[it].noduri_alive)
sol_finala[x] = true;
}
for (int i = 1; i <= n; i++)
{
if (sol_finala[i] == false)
cout << 0;
else
cout << 1;
}
return 0;
}
/**
fiecare muchie devine defapt doua muchii, una x -> y cu cost s[y] si una y -> x cu cost s[x]
iau grupul cu macar un nod alive cu cei mai putini oameni si muchia lui spre un nod cu s cat mai mic
daca nu le pot conecta, marchez ca not alive toate nodurile alive din grup
daca le pot conecta, fac un small to large pe noduri (nu conteaza daca alive sau nu) pentru a le uni
ok, idee penala, acum ramane cum implementez
tin un dsu pentru grupuri, iar in tatal grupului tin:
-nodurile alive din grup
-cate alive am
-cati oameni am
-muchiile, sortate dupa cost
imi pot tine un set cu tatii grupurilor cu macar un nod alive, pentru fiecare retinand:
-ofc nodul tata
-numarul de oameni
o sa am ceva gen:
while (setul mai are >= 2 grupuri alive)
{
iau si eu grupul din set cu numar minim de oameni
lui ii iau muchia minima pentru care nu sunt ambele noduri conectate de muchie in grupul lui nod
daca pe muchia asta nu pot conecta, atunci scot din set nodul nod (si atat)
daca pe muchia asta pot conecta, am doua cazuri:
1. nodul de care conectez nu e alive -> il scot pe asta din set, le dau join si bag combinata lor in set
2. nodul de care conectez e alive -> ii scot pe ambii din set, le dau join si bag combinata lor in set
}
apoi, din grupul care mi-a mai ramas singur in set, afisez alea alive
**/
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
24924 KB |
Output is correct |
2 |
Correct |
4 ms |
24924 KB |
Output is correct |
3 |
Correct |
5 ms |
24920 KB |
Output is correct |
4 |
Runtime error |
24 ms |
51496 KB |
Execution killed with signal 11 |
5 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
24920 KB |
Output is correct |
2 |
Correct |
5 ms |
24920 KB |
Output is correct |
3 |
Correct |
667 ms |
85440 KB |
Output is correct |
4 |
Correct |
377 ms |
78420 KB |
Output is correct |
5 |
Correct |
642 ms |
81100 KB |
Output is correct |
6 |
Correct |
697 ms |
82628 KB |
Output is correct |
7 |
Correct |
675 ms |
83032 KB |
Output is correct |
8 |
Correct |
451 ms |
78420 KB |
Output is correct |
9 |
Correct |
405 ms |
82428 KB |
Output is correct |
10 |
Correct |
315 ms |
75624 KB |
Output is correct |
11 |
Correct |
371 ms |
79604 KB |
Output is correct |
12 |
Correct |
518 ms |
78796 KB |
Output is correct |
13 |
Correct |
386 ms |
78120 KB |
Output is correct |
14 |
Correct |
361 ms |
78416 KB |
Output is correct |
15 |
Correct |
374 ms |
80252 KB |
Output is correct |
16 |
Correct |
278 ms |
77252 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
4 ms |
24920 KB |
Output is correct |
2 |
Runtime error |
779 ms |
153600 KB |
Execution killed with signal 11 |
3 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
6 ms |
24924 KB |
Output is correct |
2 |
Runtime error |
270 ms |
154228 KB |
Execution killed with signal 11 |
3 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
24924 KB |
Output is correct |
2 |
Correct |
4 ms |
24924 KB |
Output is correct |
3 |
Correct |
5 ms |
24920 KB |
Output is correct |
4 |
Runtime error |
24 ms |
51496 KB |
Execution killed with signal 11 |
5 |
Halted |
0 ms |
0 KB |
- |