Submission #876509

# Submission time Handle Problem Language Result Execution time Memory
876509 2023-11-21T20:59:13 Z danikoynov Fish 2 (JOI22_fish2) C++14
48 / 100
4000 ms 90384 KB
#include<bits/stdc++.h>
#define endl '\n'

using namespace std;

typedef long long ll;

const int maxn = 1e5 + 10;


int n, q;
ll a[maxn], pref[maxn];
void input()
{
    cin >> n;
    for (int i = 1; i <= n; i ++)
        cin >> a[i];
    cin >> q;
    a[0] = 1e9 + 10;
    a[n + 1] = 1e9 + 10;

}

struct interval
{
    int left, right, pivot;

    interval(int _left = 0, int _right = 0, int _pivot = 0)
    {
        left = _left;
        right = _right;
        pivot = _pivot;
    }
    bool operator < (const interval &it) const
    {
        if (left != it.left)
            return left < it.left;
        if (right != it.right)
            return right < it.right;
        ///assert(pivot != it.pivot);
        return pivot < it.pivot;
    }
};

set < interval > ranges;
set < interval > act[4 * maxn];

void add_range(int root, int left, int right, int qleft, int qright, interval cur)
{
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        //cout << "ROOT " << root << endl;
        act[root].insert(cur);

        return;
    }

    int mid = (left + right) / 2;
    add_range(root * 2, left, mid, qleft, qright, cur);
    add_range(root * 2 + 1, mid + 1, right, qleft, qright, cur);
}

void rem_range(int root, int left, int right, int qleft, int qright, interval cur)
{
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        /**if (act[root].back().left != cur.left || act[root].back().right != cur.right ||
                act[root].back().pivot != cur.pivot)
        {
            cout << "Alert!!!" << endl;
            cout << act[root].back().left <<  " : " << act[root].back().right << " : " << act[root].back().pivot << endl;
            exit(0);
        }*/
        //if (act[root].size() == 0)
          //  cout << "FUCK " << root << endl;
        assert(act[root].size() > 0);
        act[root].erase(cur);
        return;
    }

    int mid = (left + right) / 2;
    rem_range(root * 2, left, mid, qleft, qright, cur);
    rem_range(root * 2 + 1, mid + 1, right, qleft, qright, cur);
}

bool cmp_interval(const interval &it1, const interval &it2)
{
    if ((it1.right - it1.left) != (it2.right - it2.left))
        return (it1.right - it1.left) < (it2.right - it2.left);
    if (it1.left != it2.left)
        return it1.left < it2.left;

    /**if (it1.pivot == it2.pivot)
    {
        cout << "here" << endl;
        cout << it1.left << " " << it1.right << " " << it1.pivot << endl;
        cout << it2.left << " " << it2.right << " " << it2.pivot << endl;
        cout << "FUCK" << endl;
        exit(0);
    }*/
    return (it1.pivot < it2.pivot);
}

void get_ranges()
{
    ranges.clear();
    stack < int > st;
    st.push(0);
    vector < interval > vec;
    for (int i = 1; i <= n; i ++)
    {
        while(!st.empty() && a[st.top()] < a[i])
            st.pop();

        ranges.insert(interval(st.top(), i, i));
        vec.push_back(interval(st.top(), i, i));


        st.push(i);
    }

    while(!st.empty())
        st.pop();
    st.push(n + 1);
    for (int i = n; i > 0; i --)
    {
        while(!st.empty() && a[st.top()] < a[i])
            st.pop();

        ranges.insert(interval(i, st.top(), i));
        vec.push_back(interval(i, st.top(), i));

        st.push(i);
    }

    sort(vec.begin(), vec.end(), cmp_interval);
    ///reverse(vec.begin(), vec.end());
    for (interval cur : vec)
    {
        //cout << "added " << cur.left << " " << cur.right << endl;
        add_range(1, 0, n + 1, cur.left, cur.right, cur);
    }
}

int b[maxn];

struct node
{
    int cnt, mx;

    node(int _cnt = 0, int _mx = 1e9 + 10)
    {
        cnt = _cnt;
        mx = _mx;
    }
};

node tree[4 * maxn];
int lazy[4 * maxn];

node merge_node(node lf, node rf)
{
    if (lf.cnt == -1 || rf.mx < lf.mx)
        return rf;
    if (rf.cnt == -1 || lf.mx < rf.mx)
        return lf;

    return node(lf.cnt + rf.cnt, lf.mx);
}

void push_lazy(int root, int left, int right)
{
    tree[root].mx += lazy[root];
    if (left != right)
    {
        lazy[root * 2] += lazy[root];
        lazy[root * 2 + 1] += lazy[root];
    }
    lazy[root] = 0;
}

void build_tree(int root, int left, int right)
{
    lazy[root] = 0;
    if (left == right)
    {
        tree[root].mx = b[left];
        tree[root].cnt = 1;
        return;
    }

    int mid = (left + right) / 2;
    build_tree(root * 2, left, mid);
    build_tree(root * 2 + 1, mid + 1, right);

    tree[root] = merge_node(tree[root * 2], tree[root * 2 + 1]);
}

void update_range(int root, int left, int right, int qleft, int qright, int val)
{
    push_lazy(root, left, right);
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        lazy[root] = val;
        push_lazy(root, left, right);
        return;
    }

    int mid = (left + right) / 2;
    update_range(root * 2, left, mid, qleft, qright, val);
    update_range(root * 2 + 1, mid + 1, right, qleft, qright, val);

    tree[root] = merge_node(tree[root * 2], tree[root * 2 + 1]);
}
node query(int root, int left, int right, int qleft, int qright)
{
    push_lazy(root, left, right);
    if (left > qright || right < qleft)
        return node(-1, 1e9 + 10);

    if (left >= qleft && right <= qright)
        return tree[root];

    int mid = (left + right) / 2;

    return merge_node(query(root * 2, left, mid, qleft, qright),
            query(root * 2 + 1, mid + 1, right, qleft, qright));
}

ll values[maxn];

struct segment_tree
{
    ll tree[4 * maxn], lazy[4 * maxn];


    void build_tree(int root, int left, int right)
    {
        lazy[root] = 0;
        if (left == right)
        {
            tree[root] = values[left];
            return;
        }

        int mid = (left + right) / 2;
        build_tree(root * 2, left, mid);
        build_tree(root * 2 + 1, mid + 1, right);

        tree[root] = max(tree[root * 2], tree[root * 2 + 1]);
    }

    void push_lazy(int root, int left, int right)
    {
        tree[root] += lazy[root];
        if (left != right)
        {
            lazy[root * 2] += lazy[root];
            lazy[root * 2 + 1] += lazy[root];
        }

        lazy[root] = 0;
    }

    void update_range(int root, int left, int right, int qleft, int qright, ll val)
    {
        push_lazy(root, left, right);
        if (left > qright || right < qleft)
            return;

        if (left >= qleft && right <= qright)
        {
            lazy[root] += val;
            push_lazy(root, left, right);
            return;
        }

        int mid = (left + right) / 2;
        update_range(root * 2, left, mid, qleft, qright, val);
        update_range(root * 2 + 1, mid + 1, right, qleft, qright, val);

        tree[root] = max(tree[root * 2], tree[root * 2 + 1]);
    }

    ll walk_left(int root, int left, int right, int qleft, int qright, ll val)
    {
        push_lazy(root, left, right);
        if (left > qright || right < qleft || tree[root] <= val)
            return n + 1;

        if (left == right)
            return left;

        int mid = (left + right) / 2;
        if (left >= qleft && right <= qright)
        {
            push_lazy(root * 2, left, mid);
            push_lazy(root * 2 + 1, mid + 1, right);
            if (tree[root * 2] > val)
                return walk_left(root * 2, left, mid, qleft, qright, val);
            return walk_left(root * 2 + 1, mid + 1, right, qleft, qright, val);
        }

        return min(walk_left(root * 2, left, mid, qleft, qright, val),
                walk_left(root * 2 + 1, mid + 1, right, qleft, qright, val));
    }

    ll walk_right(int root, int left, int right, int qleft, int qright, ll val)
    {
        push_lazy(root, left, right);
        if (left > qright || right < qleft || tree[root] <= val)
            return 0;

        if (left == right)
            return left;

        int mid = (left + right) / 2;
        if (left >= qleft && right <= qright)
        {
            push_lazy(root * 2, left, mid);
            push_lazy(root * 2 + 1, mid + 1, right);
            if (tree[root * 2 + 1] > val)
                    return walk_right(root * 2 + 1, mid + 1, right, qleft, qright, val);
            return walk_right(root * 2, left, mid, qleft, qright, val);
        }

        return max(walk_right(root * 2, left, mid, qleft, qright, val),
                walk_right(root * 2 + 1, mid + 1, right, qleft, qright, val));
    }
};

segment_tree left_tree, right_tree;

ll fen[maxn];

void update_fen(int pos, ll val)
{
    for (int i = pos; i <= n; i += (i & -i))
        fen[i] += val;
}

ll query_fen(int pos)
{
    ll s = 0;
    for (int i = pos; i > 0; i -= (i & -i))
        s += fen[i];
    return s;
}

ll range_sum(int left, int right)
{
    return query_fen(right) - query_fen(left - 1);
}

void solve_query(int left, int right)
{
    int lb = left_tree.walk_right(1, 1, n, left, right, - query_fen(left - 1));
    int rb = right_tree.walk_left(1, 1, n, left, right, query_fen(right));


    cout << query(1, 1, n, lb, rb).cnt << endl;
}

void restructure()
{
    ///cout << "-------------" << endl;

    build_tree(1, 1, n);
    for (interval cur : ranges)
    {
        ll mx = min(a[cur.left], a[cur.right]);
        if (range_sum(cur.left + 1, cur.right - 1) < mx)
        {
            update_range(1, 1, n, cur.left + 1, cur.right - 1, 1);
            ///cout << cur.left << " " << cur.right << endl;
            //for (int i = cur.left + 1; i < cur.right; i ++)
              //  b[i] ++;
        }
    }
}


    vector < interval > to_add;
        vector < pair < int, int > > to_fix;
void fix_point(int pos)
{

    to_fix.clear();
    int root = 1, left = 0, right = n + 1;
    vector < interval > to_rem;
    while(true)
    {
        for (interval cur : act[root])
        {
            to_rem.push_back(cur);
            if (cur.pivot == cur.left)
                to_fix.push_back({cur.pivot, 0});
            else
                to_fix.push_back({cur.pivot, 1});
        }
        if (left == right)
            break;
        int mid = (left + right) / 2;
        if (pos <= mid)
            right = mid, root *= 2;
        else
            left = mid + 1, root = (root * 2) + 1;
    }

    sort(to_rem.begin(), to_rem.end(), cmp_interval);
    reverse(to_rem.begin(), to_rem.end());
    for (interval cur : to_rem)
    {
        //cout << "remove " << cur.left << " " << cur.right << endl;
       // if (ranges.find(cur) == ranges.end())
          //  cout << "yep" << endl;
        if (range_sum(cur.left + 1, cur.right - 1) < min(a[cur.left], a[cur.right]))
            update_range(1, 1, n, cur.left + 1, cur.right - 1, -1);
        rem_range(1, 0, n + 1, cur.left, cur.right, cur);
    }





}

void addition()
{

    to_add.clear();
    for (pair < int, int > cur : to_fix)
    {
        if (cur.second == 0)
        {
            int df = cur.first + 1;
            while(a[df] < a[cur.first])
                df ++;
            to_add.push_back(interval(cur.first, df, cur.first));
        }
        else
        {
            int df = cur.first - 1;
            while(a[df] < a[cur.first])
                df --;
            to_add.push_back(interval(df, cur.first, cur.first));
        }
    }
      sort(to_add.begin(), to_add.end(), cmp_interval);
    ///reverse(to_add.begin(), to_add.end());
    for (interval cur : to_add)
    {

        if (range_sum(cur.left + 1, cur.right - 1) < min(a[cur.left], a[cur.right]))
            update_range(1, 1, n, cur.left + 1, cur.right - 1, 1);
        ///cout << "added " << cur.left << " : " << cur.right << endl;
        add_range(1, 0, n + 1, cur.left, cur.right, cur);
    }
}
void simulate()
{

    for (int i = 1; i <= n; i ++)
        update_fen(i, a[i]);
    get_ranges();

    restructure();

    for (int i = 1; i <= n; i ++)
    {
        values[i] = a[i] - query_fen(i - 1);
    }
    left_tree.build_tree(1, 1, n);

    for (int i = 1; i <= n; i ++)
    {
        values[i] = a[i] + query_fen(i);
    }
    right_tree.build_tree(1, 1, n);
    for (int i = 1; i <= q; i ++)
    {
        int type;
        cin >> type;
        if (type == 1)
        {
            int idx;
            ll x;
            cin >> idx >> x;
            fix_point(idx);
            update_fen(idx, x - a[idx]);
            left_tree.update_range(1, 1, n, idx + 1, n, - (x - a[idx]));
            left_tree.update_range(1, 1, n, idx, idx, (x - a[idx]));
            right_tree.update_range(1, 1, n, idx, n, (x - a[idx]));
            right_tree.update_range(1, 1, n, idx, idx, (x - a[idx]));
            a[idx] = x;
            addition();
        }
        else
        {
            int l, r;
            cin >> l >> r;
            solve_query(l, r);
        }
    }
}
void solve()
{
    input();
    simulate();
}

void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}
int main()
{
    ///freopen("test.txt", "r", stdin);
    speed();
    solve();
    return 0;
}
/*
12
32 32 4 1 1 1 1 4 4 16 32 128
1
2 8 10


*/
# Verdict Execution time Memory Grader output
1 Correct 12 ms 35164 KB Output is correct
2 Correct 6 ms 35164 KB Output is correct
3 Correct 6 ms 35164 KB Output is correct
4 Correct 6 ms 35164 KB Output is correct
5 Correct 15 ms 35416 KB Output is correct
6 Correct 8 ms 35420 KB Output is correct
7 Correct 14 ms 35420 KB Output is correct
8 Correct 11 ms 35420 KB Output is correct
9 Correct 9 ms 35420 KB Output is correct
10 Correct 10 ms 35420 KB Output is correct
11 Correct 8 ms 35420 KB Output is correct
12 Correct 11 ms 35420 KB Output is correct
13 Correct 9 ms 35420 KB Output is correct
14 Correct 10 ms 35420 KB Output is correct
15 Correct 10 ms 35416 KB Output is correct
16 Correct 8 ms 35420 KB Output is correct
17 Correct 11 ms 35804 KB Output is correct
18 Correct 8 ms 35420 KB Output is correct
19 Correct 9 ms 35420 KB Output is correct
20 Correct 8 ms 35420 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 35164 KB Output is correct
2 Correct 246 ms 88516 KB Output is correct
3 Correct 219 ms 84932 KB Output is correct
4 Correct 241 ms 88572 KB Output is correct
5 Correct 219 ms 85388 KB Output is correct
6 Correct 191 ms 81100 KB Output is correct
7 Correct 196 ms 79512 KB Output is correct
8 Correct 191 ms 81092 KB Output is correct
9 Correct 190 ms 80056 KB Output is correct
10 Correct 243 ms 89800 KB Output is correct
11 Correct 203 ms 83136 KB Output is correct
12 Correct 204 ms 79676 KB Output is correct
13 Correct 190 ms 79556 KB Output is correct
14 Correct 181 ms 79120 KB Output is correct
15 Correct 199 ms 79468 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 12 ms 35164 KB Output is correct
2 Correct 6 ms 35164 KB Output is correct
3 Correct 6 ms 35164 KB Output is correct
4 Correct 6 ms 35164 KB Output is correct
5 Correct 15 ms 35416 KB Output is correct
6 Correct 8 ms 35420 KB Output is correct
7 Correct 14 ms 35420 KB Output is correct
8 Correct 11 ms 35420 KB Output is correct
9 Correct 9 ms 35420 KB Output is correct
10 Correct 10 ms 35420 KB Output is correct
11 Correct 8 ms 35420 KB Output is correct
12 Correct 11 ms 35420 KB Output is correct
13 Correct 9 ms 35420 KB Output is correct
14 Correct 10 ms 35420 KB Output is correct
15 Correct 10 ms 35416 KB Output is correct
16 Correct 8 ms 35420 KB Output is correct
17 Correct 11 ms 35804 KB Output is correct
18 Correct 8 ms 35420 KB Output is correct
19 Correct 9 ms 35420 KB Output is correct
20 Correct 8 ms 35420 KB Output is correct
21 Correct 6 ms 35164 KB Output is correct
22 Correct 246 ms 88516 KB Output is correct
23 Correct 219 ms 84932 KB Output is correct
24 Correct 241 ms 88572 KB Output is correct
25 Correct 219 ms 85388 KB Output is correct
26 Correct 191 ms 81100 KB Output is correct
27 Correct 196 ms 79512 KB Output is correct
28 Correct 191 ms 81092 KB Output is correct
29 Correct 190 ms 80056 KB Output is correct
30 Correct 243 ms 89800 KB Output is correct
31 Correct 203 ms 83136 KB Output is correct
32 Correct 204 ms 79676 KB Output is correct
33 Correct 190 ms 79556 KB Output is correct
34 Correct 181 ms 79120 KB Output is correct
35 Correct 199 ms 79468 KB Output is correct
36 Correct 288 ms 88092 KB Output is correct
37 Correct 245 ms 85628 KB Output is correct
38 Correct 219 ms 85492 KB Output is correct
39 Correct 311 ms 88660 KB Output is correct
40 Correct 238 ms 85752 KB Output is correct
41 Correct 218 ms 81604 KB Output is correct
42 Correct 205 ms 81856 KB Output is correct
43 Correct 221 ms 79972 KB Output is correct
44 Correct 217 ms 79880 KB Output is correct
45 Correct 279 ms 90016 KB Output is correct
46 Correct 243 ms 90384 KB Output is correct
47 Correct 198 ms 83188 KB Output is correct
48 Correct 300 ms 80664 KB Output is correct
49 Correct 191 ms 79812 KB Output is correct
50 Correct 186 ms 79580 KB Output is correct
51 Correct 209 ms 80324 KB Output is correct
52 Correct 187 ms 79560 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 35164 KB Output is correct
2 Correct 246 ms 88516 KB Output is correct
3 Correct 219 ms 84932 KB Output is correct
4 Correct 241 ms 88572 KB Output is correct
5 Correct 219 ms 85388 KB Output is correct
6 Correct 191 ms 81100 KB Output is correct
7 Correct 196 ms 79512 KB Output is correct
8 Correct 191 ms 81092 KB Output is correct
9 Correct 190 ms 80056 KB Output is correct
10 Correct 243 ms 89800 KB Output is correct
11 Correct 203 ms 83136 KB Output is correct
12 Correct 204 ms 79676 KB Output is correct
13 Correct 190 ms 79556 KB Output is correct
14 Correct 181 ms 79120 KB Output is correct
15 Correct 199 ms 79468 KB Output is correct
16 Correct 6 ms 35164 KB Output is correct
17 Correct 373 ms 85604 KB Output is correct
18 Correct 381 ms 88516 KB Output is correct
19 Correct 376 ms 85680 KB Output is correct
20 Correct 373 ms 85168 KB Output is correct
21 Correct 379 ms 85700 KB Output is correct
22 Correct 383 ms 88360 KB Output is correct
23 Correct 382 ms 85464 KB Output is correct
24 Correct 381 ms 85468 KB Output is correct
25 Correct 378 ms 85408 KB Output is correct
26 Correct 377 ms 85468 KB Output is correct
27 Correct 343 ms 81988 KB Output is correct
28 Correct 339 ms 81380 KB Output is correct
29 Correct 359 ms 81604 KB Output is correct
30 Correct 342 ms 79760 KB Output is correct
31 Correct 356 ms 80016 KB Output is correct
32 Correct 375 ms 82944 KB Output is correct
33 Correct 389 ms 90056 KB Output is correct
34 Correct 367 ms 82868 KB Output is correct
35 Correct 353 ms 82500 KB Output is correct
36 Correct 435 ms 89876 KB Output is correct
37 Correct 334 ms 80364 KB Output is correct
38 Correct 320 ms 79852 KB Output is correct
39 Correct 334 ms 79860 KB Output is correct
40 Correct 322 ms 79812 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 35164 KB Output is correct
2 Correct 246 ms 88516 KB Output is correct
3 Correct 219 ms 84932 KB Output is correct
4 Correct 241 ms 88572 KB Output is correct
5 Correct 219 ms 85388 KB Output is correct
6 Correct 191 ms 81100 KB Output is correct
7 Correct 196 ms 79512 KB Output is correct
8 Correct 191 ms 81092 KB Output is correct
9 Correct 190 ms 80056 KB Output is correct
10 Correct 243 ms 89800 KB Output is correct
11 Correct 203 ms 83136 KB Output is correct
12 Correct 204 ms 79676 KB Output is correct
13 Correct 190 ms 79556 KB Output is correct
14 Correct 181 ms 79120 KB Output is correct
15 Correct 199 ms 79468 KB Output is correct
16 Correct 6 ms 35164 KB Output is correct
17 Correct 3550 ms 88988 KB Output is correct
18 Execution timed out 4022 ms 87512 KB Time limit exceeded
19 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 12 ms 35164 KB Output is correct
2 Correct 6 ms 35164 KB Output is correct
3 Correct 6 ms 35164 KB Output is correct
4 Correct 6 ms 35164 KB Output is correct
5 Correct 15 ms 35416 KB Output is correct
6 Correct 8 ms 35420 KB Output is correct
7 Correct 14 ms 35420 KB Output is correct
8 Correct 11 ms 35420 KB Output is correct
9 Correct 9 ms 35420 KB Output is correct
10 Correct 10 ms 35420 KB Output is correct
11 Correct 8 ms 35420 KB Output is correct
12 Correct 11 ms 35420 KB Output is correct
13 Correct 9 ms 35420 KB Output is correct
14 Correct 10 ms 35420 KB Output is correct
15 Correct 10 ms 35416 KB Output is correct
16 Correct 8 ms 35420 KB Output is correct
17 Correct 11 ms 35804 KB Output is correct
18 Correct 8 ms 35420 KB Output is correct
19 Correct 9 ms 35420 KB Output is correct
20 Correct 8 ms 35420 KB Output is correct
21 Correct 6 ms 35164 KB Output is correct
22 Correct 246 ms 88516 KB Output is correct
23 Correct 219 ms 84932 KB Output is correct
24 Correct 241 ms 88572 KB Output is correct
25 Correct 219 ms 85388 KB Output is correct
26 Correct 191 ms 81100 KB Output is correct
27 Correct 196 ms 79512 KB Output is correct
28 Correct 191 ms 81092 KB Output is correct
29 Correct 190 ms 80056 KB Output is correct
30 Correct 243 ms 89800 KB Output is correct
31 Correct 203 ms 83136 KB Output is correct
32 Correct 204 ms 79676 KB Output is correct
33 Correct 190 ms 79556 KB Output is correct
34 Correct 181 ms 79120 KB Output is correct
35 Correct 199 ms 79468 KB Output is correct
36 Correct 288 ms 88092 KB Output is correct
37 Correct 245 ms 85628 KB Output is correct
38 Correct 219 ms 85492 KB Output is correct
39 Correct 311 ms 88660 KB Output is correct
40 Correct 238 ms 85752 KB Output is correct
41 Correct 218 ms 81604 KB Output is correct
42 Correct 205 ms 81856 KB Output is correct
43 Correct 221 ms 79972 KB Output is correct
44 Correct 217 ms 79880 KB Output is correct
45 Correct 279 ms 90016 KB Output is correct
46 Correct 243 ms 90384 KB Output is correct
47 Correct 198 ms 83188 KB Output is correct
48 Correct 300 ms 80664 KB Output is correct
49 Correct 191 ms 79812 KB Output is correct
50 Correct 186 ms 79580 KB Output is correct
51 Correct 209 ms 80324 KB Output is correct
52 Correct 187 ms 79560 KB Output is correct
53 Correct 6 ms 35164 KB Output is correct
54 Correct 373 ms 85604 KB Output is correct
55 Correct 381 ms 88516 KB Output is correct
56 Correct 376 ms 85680 KB Output is correct
57 Correct 373 ms 85168 KB Output is correct
58 Correct 379 ms 85700 KB Output is correct
59 Correct 383 ms 88360 KB Output is correct
60 Correct 382 ms 85464 KB Output is correct
61 Correct 381 ms 85468 KB Output is correct
62 Correct 378 ms 85408 KB Output is correct
63 Correct 377 ms 85468 KB Output is correct
64 Correct 343 ms 81988 KB Output is correct
65 Correct 339 ms 81380 KB Output is correct
66 Correct 359 ms 81604 KB Output is correct
67 Correct 342 ms 79760 KB Output is correct
68 Correct 356 ms 80016 KB Output is correct
69 Correct 375 ms 82944 KB Output is correct
70 Correct 389 ms 90056 KB Output is correct
71 Correct 367 ms 82868 KB Output is correct
72 Correct 353 ms 82500 KB Output is correct
73 Correct 435 ms 89876 KB Output is correct
74 Correct 334 ms 80364 KB Output is correct
75 Correct 320 ms 79852 KB Output is correct
76 Correct 334 ms 79860 KB Output is correct
77 Correct 322 ms 79812 KB Output is correct
78 Correct 6 ms 35164 KB Output is correct
79 Correct 3550 ms 88988 KB Output is correct
80 Execution timed out 4022 ms 87512 KB Time limit exceeded
81 Halted 0 ms 0 KB -