Submission #876497

# Submission time Handle Problem Language Result Execution time Memory
876497 2023-11-21T20:40:04 Z danikoynov Fish 2 (JOI22_fish2) C++14
31 / 100
4000 ms 56256 KB
#include<bits/stdc++.h>
#define endl '\n'

using namespace std;

typedef long long ll;

const int maxn = 1e5 + 10;


int n, q;
ll a[maxn], pref[maxn];
void input()
{
    cin >> n;
    for (int i = 1; i <= n; i ++)
        cin >> a[i];
    cin >> q;
    a[0] = 1e9 + 10;
    a[n + 1] = 1e9 + 10;

}

struct interval
{
    int left, right, pivot;

    interval(int _left = 0, int _right = 0, int _pivot = 0)
    {
        left = _left;
        right = _right;
        pivot = _pivot;
    }
    bool operator < (const interval &it) const
    {
        if (left != it.left)
            return left < it.left;
        if (right != it.right)
            return right < it.right;
        ///assert(pivot != it.pivot);
        return pivot < it.pivot;
    }
};

set < interval > ranges;
vector < interval > act[4 * maxn];

void add_range(int root, int left, int right, int qleft, int qright, interval cur)
{
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        //cout << "ROOT " << root << endl;
        act[root].push_back(cur);

        return;
    }

    int mid = (left + right) / 2;
    add_range(root * 2, left, mid, qleft, qright, cur);
    add_range(root * 2 + 1, mid + 1, right, qleft, qright, cur);
}

void rem_range(int root, int left, int right, int qleft, int qright, interval cur)
{
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        /**if (act[root].back().left != cur.left || act[root].back().right != cur.right ||
                act[root].back().pivot != cur.pivot)
        {
            cout << "Alert!!!" << endl;
            cout << act[root].back().left <<  " : " << act[root].back().right << " : " << act[root].back().pivot << endl;
            exit(0);
        }*/
        //if (act[root].size() == 0)
          //  cout << "FUCK " << root << endl;
        assert(act[root].size() > 0);
        act[root].pop_back();
        return;
    }

    int mid = (left + right) / 2;
    rem_range(root * 2, left, mid, qleft, qright, cur);
    rem_range(root * 2 + 1, mid + 1, right, qleft, qright, cur);
}

bool cmp_interval(const interval &it1, const interval &it2)
{
    if ((it1.right - it1.left) != (it2.right - it2.left))
        return (it1.right - it1.left) < (it2.right - it2.left);
    if (it1.left != it2.left)
        return it1.left < it2.left;
    if (it1.pivot == it2.pivot)
        while(true);
    return (it1.pivot < it2.pivot);
}

void get_ranges()
{
    ranges.clear();
    stack < int > st;
    st.push(0);
    vector < interval > vec;
    for (int i = 1; i <= n; i ++)
    {
        while(!st.empty() && a[st.top()] < a[i])
            st.pop();

        ranges.insert(interval(st.top(), i, i));
        vec.push_back(interval(st.top(), i, i));


        st.push(i);
    }

    while(!st.empty())
        st.pop();
    st.push(n + 1);
    for (int i = n; i > 0; i --)
    {
        while(!st.empty() && a[st.top()] < a[i])
            st.pop();

        ranges.insert(interval(i, st.top(), i));
        vec.push_back(interval(i, st.top(), i));

        st.push(i);
    }

    sort(vec.begin(), vec.end(), cmp_interval);
    ///reverse(vec.begin(), vec.end());
    for (interval cur : vec)
    {
        //cout << "added " << cur.left << " " << cur.right << endl;
        add_range(1, 0, n + 1, cur.left, cur.right, cur);
    }
}

int b[maxn];

struct node
{
    int cnt, mx;

    node(int _cnt = 0, int _mx = 1e9 + 10)
    {
        cnt = _cnt;
        mx = _mx;
    }
};

node tree[4 * maxn];
int lazy[4 * maxn];

node merge_node(node lf, node rf)
{
    if (lf.cnt == -1 || rf.mx < lf.mx)
        return rf;
    if (rf.cnt == -1 || lf.mx < rf.mx)
        return lf;

    return node(lf.cnt + rf.cnt, lf.mx);
}

void push_lazy(int root, int left, int right)
{
    tree[root].mx += lazy[root];
    if (left != right)
    {
        lazy[root * 2] += lazy[root];
        lazy[root * 2 + 1] += lazy[root];
    }
    lazy[root] = 0;
}

void build_tree(int root, int left, int right)
{
    lazy[root] = 0;
    if (left == right)
    {
        tree[root].mx = b[left];
        tree[root].cnt = 1;
        return;
    }

    int mid = (left + right) / 2;
    build_tree(root * 2, left, mid);
    build_tree(root * 2 + 1, mid + 1, right);

    tree[root] = merge_node(tree[root * 2], tree[root * 2 + 1]);
}

void update_range(int root, int left, int right, int qleft, int qright, int val)
{
    push_lazy(root, left, right);
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        lazy[root] = val;
        push_lazy(root, left, right);
        return;
    }

    int mid = (left + right) / 2;
    update_range(root * 2, left, mid, qleft, qright, val);
    update_range(root * 2 + 1, mid + 1, right, qleft, qright, val);

    tree[root] = merge_node(tree[root * 2], tree[root * 2 + 1]);
}
node query(int root, int left, int right, int qleft, int qright)
{
    push_lazy(root, left, right);
    if (left > qright || right < qleft)
        return node(-1, 1e9 + 10);

    if (left >= qleft && right <= qright)
        return tree[root];

    int mid = (left + right) / 2;

    return merge_node(query(root * 2, left, mid, qleft, qright),
            query(root * 2 + 1, mid + 1, right, qleft, qright));
}

ll values[maxn];

struct segment_tree
{
    ll tree[4 * maxn], lazy[4 * maxn];


    void build_tree(int root, int left, int right)
    {
        lazy[root] = 0;
        if (left == right)
        {
            tree[root] = values[left];
            return;
        }

        int mid = (left + right) / 2;
        build_tree(root * 2, left, mid);
        build_tree(root * 2 + 1, mid + 1, right);

        tree[root] = max(tree[root * 2], tree[root * 2 + 1]);
    }

    void push_lazy(int root, int left, int right)
    {
        tree[root] += lazy[root];
        if (left != right)
        {
            lazy[root * 2] += lazy[root];
            lazy[root * 2 + 1] += lazy[root];
        }

        lazy[root] = 0;
    }

    void update_range(int root, int left, int right, int qleft, int qright, ll val)
    {
        push_lazy(root, left, right);
        if (left > qright || right < qleft)
            return;

        if (left >= qleft && right <= qright)
        {
            lazy[root] += val;
            push_lazy(root, left, right);
            return;
        }

        int mid = (left + right) / 2;
        update_range(root * 2, left, mid, qleft, qright, val);
        update_range(root * 2 + 1, mid + 1, right, qleft, qright, val);

        tree[root] = max(tree[root * 2], tree[root * 2 + 1]);
    }

    ll walk_left(int root, int left, int right, int qleft, int qright, ll val)
    {
        push_lazy(root, left, right);
        if (left > qright || right < qleft || tree[root] <= val)
            return n + 1;

        if (left == right)
            return left;

        int mid = (left + right) / 2;
        if (left >= qleft && right <= qright)
        {
            push_lazy(root * 2, left, mid);
            push_lazy(root * 2 + 1, mid + 1, right);
            if (tree[root * 2] > val)
                return walk_left(root * 2, left, mid, qleft, qright, val);
            return walk_left(root * 2 + 1, mid + 1, right, qleft, qright, val);
        }

        return min(walk_left(root * 2, left, mid, qleft, qright, val),
                walk_left(root * 2 + 1, mid + 1, right, qleft, qright, val));
    }

    ll walk_right(int root, int left, int right, int qleft, int qright, ll val)
    {
        push_lazy(root, left, right);
        if (left > qright || right < qleft || tree[root] <= val)
            return 0;

        if (left == right)
            return left;

        int mid = (left + right) / 2;
        if (left >= qleft && right <= qright)
        {
            push_lazy(root * 2, left, mid);
            push_lazy(root * 2 + 1, mid + 1, right);
            if (tree[root * 2 + 1] > val)
                    return walk_right(root * 2 + 1, mid + 1, right, qleft, qright, val);
            return walk_right(root * 2, left, mid, qleft, qright, val);
        }

        return max(walk_right(root * 2, left, mid, qleft, qright, val),
                walk_right(root * 2 + 1, mid + 1, right, qleft, qright, val));
    }
};

segment_tree left_tree, right_tree;

ll fen[maxn];

void update_fen(int pos, ll val)
{
    for (int i = pos; i <= n; i += (i & -i))
        fen[i] += val;
}

ll query_fen(int pos)
{
    ll s = 0;
    for (int i = pos; i > 0; i -= (i & -i))
        s += fen[i];
    return s;
}

ll range_sum(int left, int right)
{
    return query_fen(right) - query_fen(left - 1);
}

void solve_query(int left, int right)
{
    int lb = left_tree.walk_right(1, 1, n, left, right, - query_fen(left - 1));
    int rb = right_tree.walk_left(1, 1, n, left, right, query_fen(right));


    cout << query(1, 1, n, lb, rb).cnt << endl;
}

void restructure()
{
    ///cout << "-------------" << endl;

    build_tree(1, 1, n);
    for (interval cur : ranges)
    {
        ll mx = min(a[cur.left], a[cur.right]);
        if (range_sum(cur.left + 1, cur.right - 1) < mx)
        {
            update_range(1, 1, n, cur.left + 1, cur.right - 1, 1);
            ///cout << cur.left << " " << cur.right << endl;
            //for (int i = cur.left + 1; i < cur.right; i ++)
              //  b[i] ++;
        }
    }
}



void fix_point(int pos)
{

    vector < pair < int, int > > to_fix;
    int root = 1, left = 0, right = n + 1;
    vector < interval > to_rem;
    while(true)
    {
        for (interval cur : act[root])
        {
            to_rem.push_back(cur);
            if (cur.pivot == cur.left)
                to_fix.push_back({cur.pivot, 0});
            else
                to_fix.push_back({cur.pivot, 1});
        }
        if (left == right)
            break;
        int mid = (left + right) / 2;
        if (pos <= mid)
            right = mid, root *= 2;
        else
            left = mid + 1, root = (root * 2) + 1;
    }

    sort(to_rem.begin(), to_rem.end(), cmp_interval);
    reverse(to_rem.begin(), to_rem.end());
    for (interval cur : to_rem)
    {
        //cout << "remove " << cur.left << " " << cur.right << endl;
       // if (ranges.find(cur) == ranges.end())
          //  cout << "yep" << endl;
        ranges.erase(cur);
        rem_range(1, 0, n + 1, cur.left, cur.right, cur);
    }



    vector < interval > to_add;
    for (pair < int, int > cur : to_fix)
    {
        if (cur.second == 0)
        {
            int df = cur.first + 1;
            while(a[df] < a[cur.first])
                df ++;
            to_add.push_back(interval(cur.first, df, cur.first));
        }
        else
        {
            int df = cur.first - 1;
            while(a[df] < a[cur.first])
                df --;
            to_add.push_back(interval(df, cur.first, cur.first));
        }
    }

    sort(to_add.begin(), to_add.end(), cmp_interval);
    ///reverse(to_add.begin(), to_add.end());
    for (interval cur : to_add)
    {
        ranges.insert(cur);
        ///cout << "added " << cur.left << " : " << cur.right << endl;
        add_range(1, 0, n + 1, cur.left, cur.right, cur);
    }
}
void simulate()
{
    for (int i = 1; i <= n; i ++)
        update_fen(i, a[i]);
    get_ranges();
    restructure();

    for (int i = 1; i <= n; i ++)
    {
        values[i] = a[i] - query_fen(i - 1);
    }
    left_tree.build_tree(1, 1, n);

    for (int i = 1; i <= n; i ++)
    {
        values[i] = a[i] + query_fen(i);
    }
    right_tree.build_tree(1, 1, n);
    for (int i = 1; i <= q; i ++)
    {
        int type;
        cin >> type;
        if (type == 1)
        {
            int idx;
            ll x;
            cin >> idx >> x;
            update_fen(idx, x - a[idx]);
            left_tree.update_range(1, 1, n, idx + 1, n, - (x - a[idx]));
            left_tree.update_range(1, 1, n, idx, idx, (x - a[idx]));
            right_tree.update_range(1, 1, n, idx, n, (x - a[idx]));
            right_tree.update_range(1, 1, n, idx, idx, (x - a[idx]));
            a[idx] = x;
            fix_point(idx);
            restructure();
        }
        else
        {
            int l, r;
            cin >> l >> r;
            solve_query(l, r);
        }
    }
}
void solve()
{
    input();
    simulate();
}

void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}
int main()
{
    speed();
    solve();
    return 0;
}
/*
12
32 32 4 1 1 1 1 4 4 16 32 128
1
2 8 10

*/
# Verdict Execution time Memory Grader output
1 Correct 4 ms 24920 KB Output is correct
2 Correct 4 ms 24924 KB Output is correct
3 Correct 4 ms 24924 KB Output is correct
4 Correct 4 ms 24924 KB Output is correct
5 Correct 61 ms 25236 KB Output is correct
6 Execution timed out 4074 ms 25180 KB Time limit exceeded
7 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 4 ms 24924 KB Output is correct
2 Correct 166 ms 52596 KB Output is correct
3 Correct 166 ms 52592 KB Output is correct
4 Correct 167 ms 52864 KB Output is correct
5 Correct 174 ms 52760 KB Output is correct
6 Correct 147 ms 52164 KB Output is correct
7 Correct 147 ms 51132 KB Output is correct
8 Correct 144 ms 52164 KB Output is correct
9 Correct 150 ms 51332 KB Output is correct
10 Correct 167 ms 55752 KB Output is correct
11 Correct 161 ms 52932 KB Output is correct
12 Correct 144 ms 51656 KB Output is correct
13 Correct 143 ms 51600 KB Output is correct
14 Correct 143 ms 51940 KB Output is correct
15 Correct 152 ms 51784 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 24920 KB Output is correct
2 Correct 4 ms 24924 KB Output is correct
3 Correct 4 ms 24924 KB Output is correct
4 Correct 4 ms 24924 KB Output is correct
5 Correct 61 ms 25236 KB Output is correct
6 Execution timed out 4074 ms 25180 KB Time limit exceeded
7 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 4 ms 24924 KB Output is correct
2 Correct 166 ms 52596 KB Output is correct
3 Correct 166 ms 52592 KB Output is correct
4 Correct 167 ms 52864 KB Output is correct
5 Correct 174 ms 52760 KB Output is correct
6 Correct 147 ms 52164 KB Output is correct
7 Correct 147 ms 51132 KB Output is correct
8 Correct 144 ms 52164 KB Output is correct
9 Correct 150 ms 51332 KB Output is correct
10 Correct 167 ms 55752 KB Output is correct
11 Correct 161 ms 52932 KB Output is correct
12 Correct 144 ms 51656 KB Output is correct
13 Correct 143 ms 51600 KB Output is correct
14 Correct 143 ms 51940 KB Output is correct
15 Correct 152 ms 51784 KB Output is correct
16 Correct 4 ms 24920 KB Output is correct
17 Correct 322 ms 52776 KB Output is correct
18 Correct 309 ms 52672 KB Output is correct
19 Correct 329 ms 52908 KB Output is correct
20 Correct 327 ms 52676 KB Output is correct
21 Correct 325 ms 53160 KB Output is correct
22 Correct 321 ms 52668 KB Output is correct
23 Correct 324 ms 52736 KB Output is correct
24 Correct 337 ms 52864 KB Output is correct
25 Correct 325 ms 53124 KB Output is correct
26 Correct 319 ms 52872 KB Output is correct
27 Correct 291 ms 52680 KB Output is correct
28 Correct 275 ms 52772 KB Output is correct
29 Correct 322 ms 52676 KB Output is correct
30 Correct 294 ms 51600 KB Output is correct
31 Correct 318 ms 51688 KB Output is correct
32 Correct 335 ms 53044 KB Output is correct
33 Correct 302 ms 56072 KB Output is correct
34 Correct 351 ms 52664 KB Output is correct
35 Correct 319 ms 52196 KB Output is correct
36 Correct 329 ms 56256 KB Output is correct
37 Correct 297 ms 51944 KB Output is correct
38 Correct 287 ms 52360 KB Output is correct
39 Correct 308 ms 52440 KB Output is correct
40 Correct 305 ms 52300 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 24924 KB Output is correct
2 Correct 166 ms 52596 KB Output is correct
3 Correct 166 ms 52592 KB Output is correct
4 Correct 167 ms 52864 KB Output is correct
5 Correct 174 ms 52760 KB Output is correct
6 Correct 147 ms 52164 KB Output is correct
7 Correct 147 ms 51132 KB Output is correct
8 Correct 144 ms 52164 KB Output is correct
9 Correct 150 ms 51332 KB Output is correct
10 Correct 167 ms 55752 KB Output is correct
11 Correct 161 ms 52932 KB Output is correct
12 Correct 144 ms 51656 KB Output is correct
13 Correct 143 ms 51600 KB Output is correct
14 Correct 143 ms 51940 KB Output is correct
15 Correct 152 ms 51784 KB Output is correct
16 Correct 5 ms 24924 KB Output is correct
17 Execution timed out 4069 ms 52832 KB Time limit exceeded
18 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 4 ms 24920 KB Output is correct
2 Correct 4 ms 24924 KB Output is correct
3 Correct 4 ms 24924 KB Output is correct
4 Correct 4 ms 24924 KB Output is correct
5 Correct 61 ms 25236 KB Output is correct
6 Execution timed out 4074 ms 25180 KB Time limit exceeded
7 Halted 0 ms 0 KB -