Submission #876495

# Submission time Handle Problem Language Result Execution time Memory
876495 2023-11-21T20:39:38 Z danikoynov Fish 2 (JOI22_fish2) C++14
31 / 100
4000 ms 56260 KB
#include<bits/stdc++.h>
#define endl '\n'

using namespace std;

typedef long long ll;

const int maxn = 1e5 + 10;


int n, q;
ll a[maxn], pref[maxn];
void input()
{
    cin >> n;
    for (int i = 1; i <= n; i ++)
        cin >> a[i];
    cin >> q;
    a[0] = 1e9 + 10;
    a[n + 1] = 1e9 + 10;

}

struct interval
{
    int left, right, pivot;

    interval(int _left = 0, int _right = 0, int _pivot = 0)
    {
        left = _left;
        right = _right;
        pivot = _pivot;
    }
    bool operator < (const interval &it) const
    {
        if (left != it.left)
            return left < it.left;
        if (right != it.right)
            return right < it.right;
        ///assert(pivot != it.pivot);
        return pivot < it.pivot;
    }
};

set < interval > ranges;
vector < interval > act[4 * maxn];

void add_range(int root, int left, int right, int qleft, int qright, interval cur)
{
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        //cout << "ROOT " << root << endl;
        act[root].push_back(cur);

        return;
    }

    int mid = (left + right) / 2;
    add_range(root * 2, left, mid, qleft, qright, cur);
    add_range(root * 2 + 1, mid + 1, right, qleft, qright, cur);
}

void rem_range(int root, int left, int right, int qleft, int qright, interval cur)
{
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        /**if (act[root].back().left != cur.left || act[root].back().right != cur.right ||
                act[root].back().pivot != cur.pivot)
        {
            cout << "Alert!!!" << endl;
            cout << act[root].back().left <<  " : " << act[root].back().right << " : " << act[root].back().pivot << endl;
            exit(0);
        }*/
        //if (act[root].size() == 0)
          //  cout << "FUCK " << root << endl;
        assert(act[root].size() > 0);
        act[root].pop_back();
        return;
    }

    int mid = (left + right) / 2;
    rem_range(root * 2, left, mid, qleft, qright, cur);
    rem_range(root * 2 + 1, mid + 1, right, qleft, qright, cur);
}

bool cmp_interval(const interval &it1, const interval &it2)
{
    if ((it1.right - it1.left) != (it2.right - it2.left))
        return (it1.right - it1.left) < (it2.right - it2.left);
    if (it1.left != it2.left)
        return it1.left < it2.left;
    assert(it1.pivot != it2.pivot);
    return (it1.pivot < it2.pivot);
}

void get_ranges()
{
    ranges.clear();
    stack < int > st;
    st.push(0);
    vector < interval > vec;
    for (int i = 1; i <= n; i ++)
    {
        while(!st.empty() && a[st.top()] < a[i])
            st.pop();

        ranges.insert(interval(st.top(), i, i));
        vec.push_back(interval(st.top(), i, i));


        st.push(i);
    }

    while(!st.empty())
        st.pop();
    st.push(n + 1);
    for (int i = n; i > 0; i --)
    {
        while(!st.empty() && a[st.top()] < a[i])
            st.pop();

        ranges.insert(interval(i, st.top(), i));
        vec.push_back(interval(i, st.top(), i));

        st.push(i);
    }

    sort(vec.begin(), vec.end(), cmp_interval);
    ///reverse(vec.begin(), vec.end());
    for (interval cur : vec)
    {
        //cout << "added " << cur.left << " " << cur.right << endl;
        add_range(1, 0, n + 1, cur.left, cur.right, cur);
    }
}

int b[maxn];

struct node
{
    int cnt, mx;

    node(int _cnt = 0, int _mx = 1e9 + 10)
    {
        cnt = _cnt;
        mx = _mx;
    }
};

node tree[4 * maxn];
int lazy[4 * maxn];

node merge_node(node lf, node rf)
{
    if (lf.cnt == -1 || rf.mx < lf.mx)
        return rf;
    if (rf.cnt == -1 || lf.mx < rf.mx)
        return lf;

    return node(lf.cnt + rf.cnt, lf.mx);
}

void push_lazy(int root, int left, int right)
{
    tree[root].mx += lazy[root];
    if (left != right)
    {
        lazy[root * 2] += lazy[root];
        lazy[root * 2 + 1] += lazy[root];
    }
    lazy[root] = 0;
}

void build_tree(int root, int left, int right)
{
    lazy[root] = 0;
    if (left == right)
    {
        tree[root].mx = b[left];
        tree[root].cnt = 1;
        return;
    }

    int mid = (left + right) / 2;
    build_tree(root * 2, left, mid);
    build_tree(root * 2 + 1, mid + 1, right);

    tree[root] = merge_node(tree[root * 2], tree[root * 2 + 1]);
}

void update_range(int root, int left, int right, int qleft, int qright, int val)
{
    push_lazy(root, left, right);
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        lazy[root] = val;
        push_lazy(root, left, right);
        return;
    }

    int mid = (left + right) / 2;
    update_range(root * 2, left, mid, qleft, qright, val);
    update_range(root * 2 + 1, mid + 1, right, qleft, qright, val);

    tree[root] = merge_node(tree[root * 2], tree[root * 2 + 1]);
}
node query(int root, int left, int right, int qleft, int qright)
{
    push_lazy(root, left, right);
    if (left > qright || right < qleft)
        return node(-1, 1e9 + 10);

    if (left >= qleft && right <= qright)
        return tree[root];

    int mid = (left + right) / 2;

    return merge_node(query(root * 2, left, mid, qleft, qright),
            query(root * 2 + 1, mid + 1, right, qleft, qright));
}

ll values[maxn];

struct segment_tree
{
    ll tree[4 * maxn], lazy[4 * maxn];


    void build_tree(int root, int left, int right)
    {
        lazy[root] = 0;
        if (left == right)
        {
            tree[root] = values[left];
            return;
        }

        int mid = (left + right) / 2;
        build_tree(root * 2, left, mid);
        build_tree(root * 2 + 1, mid + 1, right);

        tree[root] = max(tree[root * 2], tree[root * 2 + 1]);
    }

    void push_lazy(int root, int left, int right)
    {
        tree[root] += lazy[root];
        if (left != right)
        {
            lazy[root * 2] += lazy[root];
            lazy[root * 2 + 1] += lazy[root];
        }

        lazy[root] = 0;
    }

    void update_range(int root, int left, int right, int qleft, int qright, ll val)
    {
        push_lazy(root, left, right);
        if (left > qright || right < qleft)
            return;

        if (left >= qleft && right <= qright)
        {
            lazy[root] += val;
            push_lazy(root, left, right);
            return;
        }

        int mid = (left + right) / 2;
        update_range(root * 2, left, mid, qleft, qright, val);
        update_range(root * 2 + 1, mid + 1, right, qleft, qright, val);

        tree[root] = max(tree[root * 2], tree[root * 2 + 1]);
    }

    ll walk_left(int root, int left, int right, int qleft, int qright, ll val)
    {
        push_lazy(root, left, right);
        if (left > qright || right < qleft || tree[root] <= val)
            return n + 1;

        if (left == right)
            return left;

        int mid = (left + right) / 2;
        if (left >= qleft && right <= qright)
        {
            push_lazy(root * 2, left, mid);
            push_lazy(root * 2 + 1, mid + 1, right);
            if (tree[root * 2] > val)
                return walk_left(root * 2, left, mid, qleft, qright, val);
            return walk_left(root * 2 + 1, mid + 1, right, qleft, qright, val);
        }

        return min(walk_left(root * 2, left, mid, qleft, qright, val),
                walk_left(root * 2 + 1, mid + 1, right, qleft, qright, val));
    }

    ll walk_right(int root, int left, int right, int qleft, int qright, ll val)
    {
        push_lazy(root, left, right);
        if (left > qright || right < qleft || tree[root] <= val)
            return 0;

        if (left == right)
            return left;

        int mid = (left + right) / 2;
        if (left >= qleft && right <= qright)
        {
            push_lazy(root * 2, left, mid);
            push_lazy(root * 2 + 1, mid + 1, right);
            if (tree[root * 2 + 1] > val)
                    return walk_right(root * 2 + 1, mid + 1, right, qleft, qright, val);
            return walk_right(root * 2, left, mid, qleft, qright, val);
        }

        return max(walk_right(root * 2, left, mid, qleft, qright, val),
                walk_right(root * 2 + 1, mid + 1, right, qleft, qright, val));
    }
};

segment_tree left_tree, right_tree;

ll fen[maxn];

void update_fen(int pos, ll val)
{
    for (int i = pos; i <= n; i += (i & -i))
        fen[i] += val;
}

ll query_fen(int pos)
{
    ll s = 0;
    for (int i = pos; i > 0; i -= (i & -i))
        s += fen[i];
    return s;
}

ll range_sum(int left, int right)
{
    return query_fen(right) - query_fen(left - 1);
}

void solve_query(int left, int right)
{
    int lb = left_tree.walk_right(1, 1, n, left, right, - query_fen(left - 1));
    int rb = right_tree.walk_left(1, 1, n, left, right, query_fen(right));


    cout << query(1, 1, n, lb, rb).cnt << endl;
}

void restructure()
{
    ///cout << "-------------" << endl;

    build_tree(1, 1, n);
    for (interval cur : ranges)
    {
        ll mx = min(a[cur.left], a[cur.right]);
        if (range_sum(cur.left + 1, cur.right - 1) < mx)
        {
            update_range(1, 1, n, cur.left + 1, cur.right - 1, 1);
            ///cout << cur.left << " " << cur.right << endl;
            //for (int i = cur.left + 1; i < cur.right; i ++)
              //  b[i] ++;
        }
    }
}



void fix_point(int pos)
{

    vector < pair < int, int > > to_fix;
    int root = 1, left = 0, right = n + 1;
    vector < interval > to_rem;
    while(true)
    {
        for (interval cur : act[root])
        {
            to_rem.push_back(cur);
            if (cur.pivot == cur.left)
                to_fix.push_back({cur.pivot, 0});
            else
                to_fix.push_back({cur.pivot, 1});
        }
        if (left == right)
            break;
        int mid = (left + right) / 2;
        if (pos <= mid)
            right = mid, root *= 2;
        else
            left = mid + 1, root = (root * 2) + 1;
    }

    sort(to_rem.begin(), to_rem.end(), cmp_interval);
    reverse(to_rem.begin(), to_rem.end());
    for (interval cur : to_rem)
    {
        //cout << "remove " << cur.left << " " << cur.right << endl;
       // if (ranges.find(cur) == ranges.end())
          //  cout << "yep" << endl;
        ranges.erase(cur);
        rem_range(1, 0, n + 1, cur.left, cur.right, cur);
    }



    vector < interval > to_add;
    for (pair < int, int > cur : to_fix)
    {
        if (cur.second == 0)
        {
            int df = cur.first + 1;
            while(a[df] < a[cur.first])
                df ++;
            to_add.push_back(interval(cur.first, df, cur.first));
        }
        else
        {
            int df = cur.first - 1;
            while(a[df] < a[cur.first])
                df --;
            to_add.push_back(interval(df, cur.first, cur.first));
        }
    }

    sort(to_add.begin(), to_add.end(), cmp_interval);
    ///reverse(to_add.begin(), to_add.end());
    for (interval cur : to_add)
    {
        ranges.insert(cur);
        ///cout << "added " << cur.left << " : " << cur.right << endl;
        add_range(1, 0, n + 1, cur.left, cur.right, cur);
    }
}
void simulate()
{
    for (int i = 1; i <= n; i ++)
        update_fen(i, a[i]);
    get_ranges();
    restructure();

    for (int i = 1; i <= n; i ++)
    {
        values[i] = a[i] - query_fen(i - 1);
    }
    left_tree.build_tree(1, 1, n);

    for (int i = 1; i <= n; i ++)
    {
        values[i] = a[i] + query_fen(i);
    }
    right_tree.build_tree(1, 1, n);
    for (int i = 1; i <= q; i ++)
    {
        int type;
        cin >> type;
        if (type == 1)
        {
            int idx;
            ll x;
            cin >> idx >> x;
            update_fen(idx, x - a[idx]);
            left_tree.update_range(1, 1, n, idx + 1, n, - (x - a[idx]));
            left_tree.update_range(1, 1, n, idx, idx, (x - a[idx]));
            right_tree.update_range(1, 1, n, idx, n, (x - a[idx]));
            right_tree.update_range(1, 1, n, idx, idx, (x - a[idx]));
            a[idx] = x;
            fix_point(idx);
            restructure();
        }
        else
        {
            int l, r;
            cin >> l >> r;
            solve_query(l, r);
        }
    }
}
void solve()
{
    input();
    simulate();
}

void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}
int main()
{
    speed();
    solve();
    return 0;
}
/*
12
32 32 4 1 1 1 1 4 4 16 32 128
1
2 8 10

*/
# Verdict Execution time Memory Grader output
1 Correct 4 ms 24924 KB Output is correct
2 Correct 6 ms 25088 KB Output is correct
3 Correct 4 ms 24924 KB Output is correct
4 Correct 4 ms 24924 KB Output is correct
5 Correct 61 ms 25180 KB Output is correct
6 Runtime error 34 ms 50768 KB Execution killed with signal 6
7 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 4 ms 24920 KB Output is correct
2 Correct 165 ms 52612 KB Output is correct
3 Correct 175 ms 52800 KB Output is correct
4 Correct 181 ms 52676 KB Output is correct
5 Correct 168 ms 52628 KB Output is correct
6 Correct 147 ms 52408 KB Output is correct
7 Correct 152 ms 51312 KB Output is correct
8 Correct 145 ms 52304 KB Output is correct
9 Correct 154 ms 51136 KB Output is correct
10 Correct 169 ms 55984 KB Output is correct
11 Correct 161 ms 52928 KB Output is correct
12 Correct 150 ms 51836 KB Output is correct
13 Correct 148 ms 52068 KB Output is correct
14 Correct 146 ms 51924 KB Output is correct
15 Correct 154 ms 51544 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 24924 KB Output is correct
2 Correct 6 ms 25088 KB Output is correct
3 Correct 4 ms 24924 KB Output is correct
4 Correct 4 ms 24924 KB Output is correct
5 Correct 61 ms 25180 KB Output is correct
6 Runtime error 34 ms 50768 KB Execution killed with signal 6
7 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 4 ms 24920 KB Output is correct
2 Correct 165 ms 52612 KB Output is correct
3 Correct 175 ms 52800 KB Output is correct
4 Correct 181 ms 52676 KB Output is correct
5 Correct 168 ms 52628 KB Output is correct
6 Correct 147 ms 52408 KB Output is correct
7 Correct 152 ms 51312 KB Output is correct
8 Correct 145 ms 52304 KB Output is correct
9 Correct 154 ms 51136 KB Output is correct
10 Correct 169 ms 55984 KB Output is correct
11 Correct 161 ms 52928 KB Output is correct
12 Correct 150 ms 51836 KB Output is correct
13 Correct 148 ms 52068 KB Output is correct
14 Correct 146 ms 51924 KB Output is correct
15 Correct 154 ms 51544 KB Output is correct
16 Correct 5 ms 24924 KB Output is correct
17 Correct 325 ms 52932 KB Output is correct
18 Correct 347 ms 52680 KB Output is correct
19 Correct 343 ms 53236 KB Output is correct
20 Correct 375 ms 52744 KB Output is correct
21 Correct 327 ms 53000 KB Output is correct
22 Correct 320 ms 52696 KB Output is correct
23 Correct 339 ms 52648 KB Output is correct
24 Correct 343 ms 52800 KB Output is correct
25 Correct 320 ms 52964 KB Output is correct
26 Correct 323 ms 52868 KB Output is correct
27 Correct 284 ms 52856 KB Output is correct
28 Correct 277 ms 52676 KB Output is correct
29 Correct 284 ms 52856 KB Output is correct
30 Correct 323 ms 51932 KB Output is correct
31 Correct 300 ms 51528 KB Output is correct
32 Correct 349 ms 53012 KB Output is correct
33 Correct 311 ms 56260 KB Output is correct
34 Correct 345 ms 52936 KB Output is correct
35 Correct 316 ms 52160 KB Output is correct
36 Correct 323 ms 56000 KB Output is correct
37 Correct 275 ms 51948 KB Output is correct
38 Correct 279 ms 52124 KB Output is correct
39 Correct 278 ms 52372 KB Output is correct
40 Correct 276 ms 52168 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 24920 KB Output is correct
2 Correct 165 ms 52612 KB Output is correct
3 Correct 175 ms 52800 KB Output is correct
4 Correct 181 ms 52676 KB Output is correct
5 Correct 168 ms 52628 KB Output is correct
6 Correct 147 ms 52408 KB Output is correct
7 Correct 152 ms 51312 KB Output is correct
8 Correct 145 ms 52304 KB Output is correct
9 Correct 154 ms 51136 KB Output is correct
10 Correct 169 ms 55984 KB Output is correct
11 Correct 161 ms 52928 KB Output is correct
12 Correct 150 ms 51836 KB Output is correct
13 Correct 148 ms 52068 KB Output is correct
14 Correct 146 ms 51924 KB Output is correct
15 Correct 154 ms 51544 KB Output is correct
16 Correct 4 ms 24924 KB Output is correct
17 Execution timed out 4077 ms 52828 KB Time limit exceeded
18 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 4 ms 24924 KB Output is correct
2 Correct 6 ms 25088 KB Output is correct
3 Correct 4 ms 24924 KB Output is correct
4 Correct 4 ms 24924 KB Output is correct
5 Correct 61 ms 25180 KB Output is correct
6 Runtime error 34 ms 50768 KB Execution killed with signal 6
7 Halted 0 ms 0 KB -