Submission #876481

# Submission time Handle Problem Language Result Execution time Memory
876481 2023-11-21T19:43:16 Z danikoynov Fish 2 (JOI22_fish2) C++14
36 / 100
4000 ms 34464 KB
#include<bits/stdc++.h>
#define endl '\n'

using namespace std;

typedef long long ll;

const int maxn = 1e5 + 10;


int n, q;
ll a[maxn], pref[maxn];
void input()
{
    cin >> n;
    for (int i = 1; i <= n; i ++)
        cin >> a[i];
    cin >> q;
    a[0] = 1e9 + 10;
    a[n + 1] = 1e9 + 10;

}

struct interval
{
    int left, right, pivot;

    interval(int _left = 0, int _right = 0, int _pivot = 0)
    {
        left = _left;
        right = _right;
        pivot = _pivot;
    }
    bool operator < (const interval &it) const
    {
        if (left != it.left)
            return left < it.left;
        if (right != it.right)
            return right > it.right;
        ///assert(pivot != it.pivot);
        return pivot < it.pivot;
    }
};

set < interval > ranges;

void get_ranges()
{
    ranges.clear();
    stack < int > st;
    st.push(0);
    for (int i = 1; i <= n; i ++)
    {
        while(!st.empty() && a[st.top()] < a[i])
            st.pop();

        ranges.insert(interval(st.top(), i, i));

        st.push(i);
    }

    while(!st.empty())
        st.pop();
    st.push(n + 1);
    for (int i = n; i > 0; i --)
    {
        while(!st.empty() && a[st.top()] < a[i])
            st.pop();

        ranges.insert(interval(i, st.top(), i));

        st.push(i);
    }
}

int b[maxn];

struct node
{
    int cnt, mx;

    node(int _cnt = 0, int _mx = 1e9 + 10)
    {
        cnt = _cnt;
        mx = _mx;
    }
};

node tree[4 * maxn];
int lazy[4 * maxn];

node merge_node(node lf, node rf)
{
    if (lf.cnt == -1 || rf.mx < lf.mx)
        return rf;
    if (rf.cnt == -1 || lf.mx < rf.mx)
        return lf;

    return node(lf.cnt + rf.cnt, lf.mx);
}

void push_lazy(int root, int left, int right)
{
    tree[root].mx += lazy[root];
    if (left != right)
    {
        lazy[root * 2] += lazy[root];
        lazy[root * 2 + 1] += lazy[root];
    }
    lazy[root] = 0;
}

void build_tree(int root, int left, int right)
{
    lazy[root] = 0;
    if (left == right)
    {
        tree[root].mx = b[left];
        tree[root].cnt = 1;
        return;
    }

    int mid = (left + right) / 2;
    build_tree(root * 2, left, mid);
    build_tree(root * 2 + 1, mid + 1, right);

    tree[root] = merge_node(tree[root * 2], tree[root * 2 + 1]);
}

void update_range(int root, int left, int right, int qleft, int qright, int val)
{
    push_lazy(root, left, right);
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        lazy[root] = val;
        push_lazy(root, left, right);
        return;
    }

    int mid = (left + right) / 2;
    update_range(root * 2, left, mid, qleft, qright, val);
    update_range(root * 2 + 1, mid + 1, right, qleft, qright, val);

    tree[root] = merge_node(tree[root * 2], tree[root * 2 + 1]);
}
node query(int root, int left, int right, int qleft, int qright)
{
    push_lazy(root, left, right);
    if (left > qright || right < qleft)
        return node(-1, 1e9 + 10);

    if (left >= qleft && right <= qright)
        return tree[root];

    int mid = (left + right) / 2;

    return merge_node(query(root * 2, left, mid, qleft, qright),
            query(root * 2 + 1, mid + 1, right, qleft, qright));
}

ll values[maxn];

struct segment_tree
{
    ll tree[4 * maxn], lazy[4 * maxn];


    void build_tree(int root, int left, int right)
    {
        lazy[root] = 0;
        if (left == right)
        {
            tree[root] = values[left];
            return;
        }

        int mid = (left + right) / 2;
        build_tree(root * 2, left, mid);
        build_tree(root * 2 + 1, mid + 1, right);

        tree[root] = max(tree[root * 2], tree[root * 2 + 1]);
    }

    void push_lazy(int root, int left, int right)
    {
        tree[root] += lazy[root];
        if (left != right)
        {
            lazy[root * 2] += lazy[root];
            lazy[root * 2 + 1] += lazy[root];
        }

        lazy[root] = 0;
    }

    void update_range(int root, int left, int right, int qleft, int qright, ll val)
    {
        push_lazy(root, left, right);
        if (left > qright || right < qleft)
            return;

        if (left >= qleft && right <= qright)
        {
            lazy[root] += val;
            push_lazy(root, left, right);
            return;
        }

        int mid = (left + right) / 2;
        update_range(root * 2, left, mid, qleft, qright, val);
        update_range(root * 2 + 1, mid + 1, right, qleft, qright, val);

        tree[root] = max(tree[root * 2], tree[root * 2 + 1]);
    }

    ll walk_left(int root, int left, int right, int qleft, int qright, ll val)
    {
        push_lazy(root, left, right);
        if (left > qright || right < qleft || tree[root] <= val)
            return n + 1;

        if (left == right)
            return left;

        int mid = (left + right) / 2;
        if (left >= qleft && right <= qright)
        {
            push_lazy(root * 2, left, mid);
            push_lazy(root * 2 + 1, mid + 1, right);
            if (tree[root * 2] > val)
                return walk_left(root * 2, left, mid, qleft, qright, val);
            return walk_left(root * 2 + 1, mid + 1, right, qleft, qright, val);
        }

        return min(walk_left(root * 2, left, mid, qleft, qright, val),
                walk_left(root * 2 + 1, mid + 1, right, qleft, qright, val));
    }

    ll walk_right(int root, int left, int right, int qleft, int qright, ll val)
    {
        push_lazy(root, left, right);
        if (left > qright || right < qleft || tree[root] <= val)
            return 0;

        if (left == right)
            return left;

        int mid = (left + right) / 2;
        if (left >= qleft && right <= qright)
        {
            push_lazy(root * 2, left, mid);
            push_lazy(root * 2 + 1, mid + 1, right);
            if (tree[root * 2 + 1] > val)
                    return walk_right(root * 2 + 1, mid + 1, right, qleft, qright, val);
            return walk_right(root * 2, left, mid, qleft, qright, val);
        }

        return max(walk_right(root * 2, left, mid, qleft, qright, val),
                walk_right(root * 2 + 1, mid + 1, right, qleft, qright, val));
    }
};

segment_tree left_tree, right_tree;

ll fen[maxn];

void update_fen(int pos, ll val)
{
    for (int i = pos; i <= n; i += (i & -i))
        fen[i] += val;
}

ll query_fen(int pos)
{
    ll s = 0;
    for (int i = pos; i > 0; i -= (i & -i))
        s += fen[i];
    return s;
}

ll range_sum(int left, int right)
{
    return query_fen(right) - query_fen(left - 1);
}

void solve_query(int left, int right)
{
    int lb = left_tree.walk_right(1, 1, n, left, right, - query_fen(left - 1));
    int rb = right_tree.walk_left(1, 1, n, left, right, query_fen(right));


    cout << query(1, 1, n, lb, rb).cnt << endl;
}

void restructure()
{
    ///cout << "-------------" << endl;
    get_ranges();
    build_tree(1, 1, n);
    for (interval cur : ranges)
    {
        ll mx = min(a[cur.left], a[cur.right]);
        if (range_sum(cur.left + 1, cur.right - 1) < mx)
        {
            update_range(1, 1, n, cur.left + 1, cur.right - 1, 1);
            ///cout << cur.left << " " << cur.right << endl;
            //for (int i = cur.left + 1; i < cur.right; i ++)
              //  b[i] ++;
        }
    }




}
void simulate()
{
    for (int i = 1; i <= n; i ++)
        update_fen(i, a[i]);
    restructure();

    for (int i = 1; i <= n; i ++)
    {
        values[i] = a[i] - query_fen(i - 1);
    }
    left_tree.build_tree(1, 1, n);

    for (int i = 1; i <= n; i ++)
    {
        values[i] = a[i] + query_fen(i);
    }
    right_tree.build_tree(1, 1, n);
    for (int i = 1; i <= q; i ++)
    {
        int type;
        cin >> type;
        if (type == 1)
        {
            int idx;
            ll x;
            cin >> idx >> x;
            update_fen(idx, x - a[idx]);
            left_tree.update_range(1, 1, n, idx + 1, n, - (x - a[idx]));
            left_tree.update_range(1, 1, n, idx, idx, (x - a[idx]));
            right_tree.update_range(1, 1, n, idx, n, (x - a[idx]));
            right_tree.update_range(1, 1, n, idx, idx, (x - a[idx]));
            a[idx] = x;
            restructure();
        }
        else
        {
            int l, r;
            cin >> l >> r;
            solve_query(l, r);
        }
    }
}
void solve()
{
    input();
    simulate();
}

void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}
int main()
{
    speed();
    solve();
    return 0;
}
/*
12
32 32 4 1 1 1 1 4 4 16 32 128
1
2 8 10

*/
# Verdict Execution time Memory Grader output
1 Correct 2 ms 16728 KB Output is correct
2 Correct 2 ms 16728 KB Output is correct
3 Correct 2 ms 16732 KB Output is correct
4 Correct 2 ms 16732 KB Output is correct
5 Correct 88 ms 16932 KB Output is correct
6 Correct 26 ms 16732 KB Output is correct
7 Correct 98 ms 16732 KB Output is correct
8 Correct 47 ms 16732 KB Output is correct
9 Correct 27 ms 16924 KB Output is correct
10 Correct 72 ms 16732 KB Output is correct
11 Correct 14 ms 16728 KB Output is correct
12 Correct 100 ms 16732 KB Output is correct
13 Correct 27 ms 16728 KB Output is correct
14 Correct 95 ms 16940 KB Output is correct
15 Correct 71 ms 16728 KB Output is correct
16 Correct 26 ms 16732 KB Output is correct
17 Correct 84 ms 16924 KB Output is correct
18 Correct 13 ms 16728 KB Output is correct
19 Correct 71 ms 16732 KB Output is correct
20 Correct 31 ms 16940 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 16728 KB Output is correct
2 Correct 99 ms 33688 KB Output is correct
3 Correct 94 ms 33616 KB Output is correct
4 Correct 100 ms 33688 KB Output is correct
5 Correct 94 ms 33688 KB Output is correct
6 Correct 78 ms 33616 KB Output is correct
7 Correct 79 ms 33708 KB Output is correct
8 Correct 80 ms 33488 KB Output is correct
9 Correct 78 ms 33588 KB Output is correct
10 Correct 92 ms 33688 KB Output is correct
11 Correct 92 ms 33620 KB Output is correct
12 Correct 87 ms 33496 KB Output is correct
13 Correct 78 ms 33688 KB Output is correct
14 Correct 83 ms 33620 KB Output is correct
15 Correct 97 ms 33612 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 16728 KB Output is correct
2 Correct 2 ms 16728 KB Output is correct
3 Correct 2 ms 16732 KB Output is correct
4 Correct 2 ms 16732 KB Output is correct
5 Correct 88 ms 16932 KB Output is correct
6 Correct 26 ms 16732 KB Output is correct
7 Correct 98 ms 16732 KB Output is correct
8 Correct 47 ms 16732 KB Output is correct
9 Correct 27 ms 16924 KB Output is correct
10 Correct 72 ms 16732 KB Output is correct
11 Correct 14 ms 16728 KB Output is correct
12 Correct 100 ms 16732 KB Output is correct
13 Correct 27 ms 16728 KB Output is correct
14 Correct 95 ms 16940 KB Output is correct
15 Correct 71 ms 16728 KB Output is correct
16 Correct 26 ms 16732 KB Output is correct
17 Correct 84 ms 16924 KB Output is correct
18 Correct 13 ms 16728 KB Output is correct
19 Correct 71 ms 16732 KB Output is correct
20 Correct 31 ms 16940 KB Output is correct
21 Correct 2 ms 16728 KB Output is correct
22 Correct 99 ms 33688 KB Output is correct
23 Correct 94 ms 33616 KB Output is correct
24 Correct 100 ms 33688 KB Output is correct
25 Correct 94 ms 33688 KB Output is correct
26 Correct 78 ms 33616 KB Output is correct
27 Correct 79 ms 33708 KB Output is correct
28 Correct 80 ms 33488 KB Output is correct
29 Correct 78 ms 33588 KB Output is correct
30 Correct 92 ms 33688 KB Output is correct
31 Correct 92 ms 33620 KB Output is correct
32 Correct 87 ms 33496 KB Output is correct
33 Correct 78 ms 33688 KB Output is correct
34 Correct 83 ms 33620 KB Output is correct
35 Correct 97 ms 33612 KB Output is correct
36 Execution timed out 4035 ms 33716 KB Time limit exceeded
37 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 16728 KB Output is correct
2 Correct 99 ms 33688 KB Output is correct
3 Correct 94 ms 33616 KB Output is correct
4 Correct 100 ms 33688 KB Output is correct
5 Correct 94 ms 33688 KB Output is correct
6 Correct 78 ms 33616 KB Output is correct
7 Correct 79 ms 33708 KB Output is correct
8 Correct 80 ms 33488 KB Output is correct
9 Correct 78 ms 33588 KB Output is correct
10 Correct 92 ms 33688 KB Output is correct
11 Correct 92 ms 33620 KB Output is correct
12 Correct 87 ms 33496 KB Output is correct
13 Correct 78 ms 33688 KB Output is correct
14 Correct 83 ms 33620 KB Output is correct
15 Correct 97 ms 33612 KB Output is correct
16 Correct 2 ms 16732 KB Output is correct
17 Correct 252 ms 33988 KB Output is correct
18 Correct 250 ms 34152 KB Output is correct
19 Correct 252 ms 34024 KB Output is correct
20 Correct 252 ms 33872 KB Output is correct
21 Correct 246 ms 34064 KB Output is correct
22 Correct 235 ms 34164 KB Output is correct
23 Correct 254 ms 33876 KB Output is correct
24 Correct 253 ms 33912 KB Output is correct
25 Correct 253 ms 34132 KB Output is correct
26 Correct 277 ms 33940 KB Output is correct
27 Correct 215 ms 34128 KB Output is correct
28 Correct 222 ms 34464 KB Output is correct
29 Correct 211 ms 34132 KB Output is correct
30 Correct 225 ms 33872 KB Output is correct
31 Correct 226 ms 33688 KB Output is correct
32 Correct 268 ms 33876 KB Output is correct
33 Correct 236 ms 33948 KB Output is correct
34 Correct 265 ms 33864 KB Output is correct
35 Correct 252 ms 34392 KB Output is correct
36 Correct 234 ms 33948 KB Output is correct
37 Correct 212 ms 33952 KB Output is correct
38 Correct 212 ms 34052 KB Output is correct
39 Correct 226 ms 34248 KB Output is correct
40 Correct 209 ms 34128 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 16728 KB Output is correct
2 Correct 99 ms 33688 KB Output is correct
3 Correct 94 ms 33616 KB Output is correct
4 Correct 100 ms 33688 KB Output is correct
5 Correct 94 ms 33688 KB Output is correct
6 Correct 78 ms 33616 KB Output is correct
7 Correct 79 ms 33708 KB Output is correct
8 Correct 80 ms 33488 KB Output is correct
9 Correct 78 ms 33588 KB Output is correct
10 Correct 92 ms 33688 KB Output is correct
11 Correct 92 ms 33620 KB Output is correct
12 Correct 87 ms 33496 KB Output is correct
13 Correct 78 ms 33688 KB Output is correct
14 Correct 83 ms 33620 KB Output is correct
15 Correct 97 ms 33612 KB Output is correct
16 Correct 2 ms 16732 KB Output is correct
17 Execution timed out 4066 ms 33688 KB Time limit exceeded
18 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 16728 KB Output is correct
2 Correct 2 ms 16728 KB Output is correct
3 Correct 2 ms 16732 KB Output is correct
4 Correct 2 ms 16732 KB Output is correct
5 Correct 88 ms 16932 KB Output is correct
6 Correct 26 ms 16732 KB Output is correct
7 Correct 98 ms 16732 KB Output is correct
8 Correct 47 ms 16732 KB Output is correct
9 Correct 27 ms 16924 KB Output is correct
10 Correct 72 ms 16732 KB Output is correct
11 Correct 14 ms 16728 KB Output is correct
12 Correct 100 ms 16732 KB Output is correct
13 Correct 27 ms 16728 KB Output is correct
14 Correct 95 ms 16940 KB Output is correct
15 Correct 71 ms 16728 KB Output is correct
16 Correct 26 ms 16732 KB Output is correct
17 Correct 84 ms 16924 KB Output is correct
18 Correct 13 ms 16728 KB Output is correct
19 Correct 71 ms 16732 KB Output is correct
20 Correct 31 ms 16940 KB Output is correct
21 Correct 2 ms 16728 KB Output is correct
22 Correct 99 ms 33688 KB Output is correct
23 Correct 94 ms 33616 KB Output is correct
24 Correct 100 ms 33688 KB Output is correct
25 Correct 94 ms 33688 KB Output is correct
26 Correct 78 ms 33616 KB Output is correct
27 Correct 79 ms 33708 KB Output is correct
28 Correct 80 ms 33488 KB Output is correct
29 Correct 78 ms 33588 KB Output is correct
30 Correct 92 ms 33688 KB Output is correct
31 Correct 92 ms 33620 KB Output is correct
32 Correct 87 ms 33496 KB Output is correct
33 Correct 78 ms 33688 KB Output is correct
34 Correct 83 ms 33620 KB Output is correct
35 Correct 97 ms 33612 KB Output is correct
36 Execution timed out 4035 ms 33716 KB Time limit exceeded
37 Halted 0 ms 0 KB -