Submission #876323

# Submission time Handle Problem Language Result Execution time Memory
876323 2023-11-21T14:36:23 Z Kanon Counting Mushrooms (IOI20_mushrooms) C++14
88.2812 / 100
5 ms 804 KB
#include <bits/stdc++.h>
#include "mushrooms.h"
 
using namespace std;
 
 
const int magic = 84;
const int bound = 226;
 
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());
// generate random number between l, r : uniform_int_distribution<long long>(l, r)(rng)
// random shuffle : shuffle(.begin(), .end(), rng)
 
int count_mushrooms(int n) {
 
  if (n <= bound + 1) {
    int ret = 1;
    for (int i = 1; i < n; i++) {
      ret += use_machine({0, i}) ^ 1;
    }
    return ret;
  }
 
  vector<int> a(n, -1);
  a[0] = 0;
 
  vector<int> order(magic);
  iota(order.begin(), order.end(), 1);
  shuffle(order.begin(), order.end(), rng);
 
  int cnt = magic + 1;
  int iter = 1;
  map<int, vector<int>> best_choice;
 
  while (iter--) {
 
    order.insert(order.begin(), 0);
    order.push_back(cnt++);
    int st = use_machine(order);
    a[cnt - 1] = a[0] ^ (st & 1);
 
    best_choice[st] = order;
 
    int sz = order.size() / (st + 1);
    vector<int> Lorder, Rorder;
 
    for (int i = 1; i < (int) order.size() - 1; i++) {
      int md = i % (2 * sz);
      if (md >= sz) Rorder.push_back(order[i]);
      else Lorder.push_back(order[i]);
    }
 
    shuffle(Lorder.begin(), Lorder.end(), rng);
    shuffle(Rorder.begin(), Rorder.end(), rng);
    order = Lorder;
    order.insert(order.end(), Rorder.begin(), Rorder.end());
 
  }
 
  int st = best_choice.begin()->first;
  order = best_choice.begin()->second;
  vector<int> ONE, ZERO;
  ZERO.push_back(0);
  for (int i = 0; i < 2; i++) {
    a[cnt] = (use_machine({0, cnt}) & 1) ^ a[0];
    cnt++;
    if (a[cnt - 1] == 0) ZERO.push_back(cnt - 1);
    else ONE.push_back(cnt - 1);
  }
 
  function<void(int, int, int, vector<int>)> dfs = [&](int vL, int vR, int tot, vector<int> p) {
 
    assert(vL != -1 && vR != -1 && vL == a[p[0]] && vR == a[p.back()]);
    assert(0 <= tot && tot <= (int) p.size() - 1);
 
    if (p.size() <= 2) return;
    if (tot == 0) {
      for (int i = 1; i < (int) p.size() - 1; i++) a[p[i]] = a[p[i - 1]];
      return;
    }
    if (tot == (int) p.size() - 1) {
      for (int i = 1; i < (int) p.size() - 1; i++) a[p[i]] = a[p[i - 1]] ^ 1;
      return;
    }
 
    int sz = p.size();
    int mid = (sz + 1) / 2;
    assert(mid > 1);
 
    if (mid > 2) {
 
      vector<int> que(p.begin(), p.begin() + mid);
      que.push_back(cnt++);
 
      int st = use_machine(que);
      a[cnt - 1] = vL ^ (st & 1);
 
      dfs(vL, a[cnt - 1], st, que);
 
      for (int i = 1; i < mid; i++) {
        int u = que[i], v = que[i - 1];
        tot -= a[u] ^ a[v];
      }
 
    } else {
 
      vector<int> pii = ONE.size() >= 2 ? ONE : ZERO;
 
      int st = use_machine({pii[0], p[mid - 1], pii[1], cnt++});
 
      a[cnt - 1] = a[pii[0]] ^ (st & 1);
      st -= a[pii[1]] ^ a[cnt - 1];
 
      if (st > 0) a[p[mid - 1]] = a[pii[0]] ^ 1;
      else a[p[mid - 1]] = a[pii[0]];
 
      tot -= a[p[mid - 1]] ^ a[p[0]];
 
    }
 
    vector<int> que = vector<int>(p.begin() + mid - 1, p.end());
    dfs(a[p[mid - 1]], vR, tot, que);
 
  };
 
  dfs(a[0], a[order.back()], st, order);
 
  int ret = 0;
  vector<int> zeros, ones;
  for (int i = 0; i < cnt; i++) {
    if (a[i] == 0) zeros.push_back(i);
    else ones.push_back(i);
  }
  ret += zeros.size();
 
  while (cnt < n) {
 
    int len = min(n - cnt, (int) max(zeros.size(), ones.size()));
    vector<int> ids = zeros.size() >= ones.size() ? zeros : ones;
 
    vector<int> que;
    for (int i = 0; i < len; i++) {
      que.push_back(ids[i]);
      que.push_back(cnt++);
    }
 
    int st = use_machine(que);
 
    if (ids == ones) {
 
      a[cnt - 1] = 1 ^ (st & 1);
      ret += a[cnt - 1] == 0;
      st -= a[cnt - 1] == 0;
 
      if (a[cnt - 1] == 0) zeros.push_back(cnt - 1);
      else ones.push_back(cnt - 1);
 
      assert(st % 2 == 0);
      ret += st >> 1;
 
    } else {
 
      a[cnt - 1] = 0 ^ (st & 1);
      ret += a[cnt - 1] == 0;
      st -= a[cnt - 1] == 1;
 
      if (a[cnt - 1] == 0) zeros.push_back(cnt - 1);
      else ones.push_back(cnt - 1);
 
      assert(st % 2 == 0);
      ret += (len - 1) - (st >> 1);
 
    }
  }
  return ret;
}
 
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 344 KB Output is correct
3 Correct 0 ms 344 KB Output is correct
4 Correct 0 ms 344 KB Output is correct
5 Correct 1 ms 344 KB Output is correct
6 Correct 1 ms 456 KB Output is correct
7 Correct 3 ms 552 KB Output is correct
8 Correct 4 ms 548 KB Output is correct
9 Correct 4 ms 548 KB Output is correct
10 Correct 4 ms 544 KB Output is correct
11 Partially correct 4 ms 552 KB Output is partially correct
12 Correct 4 ms 548 KB Output is correct
13 Correct 4 ms 544 KB Output is correct
14 Correct 2 ms 504 KB Output is correct
15 Partially correct 4 ms 544 KB Output is partially correct
16 Partially correct 4 ms 556 KB Output is partially correct
17 Correct 2 ms 492 KB Output is correct
18 Correct 4 ms 552 KB Output is correct
19 Partially correct 4 ms 556 KB Output is partially correct
20 Correct 4 ms 540 KB Output is correct
21 Correct 4 ms 548 KB Output is correct
22 Partially correct 4 ms 548 KB Output is partially correct
23 Correct 4 ms 548 KB Output is correct
24 Correct 2 ms 764 KB Output is correct
25 Partially correct 4 ms 552 KB Output is partially correct
26 Partially correct 4 ms 548 KB Output is partially correct
27 Partially correct 4 ms 804 KB Output is partially correct
28 Partially correct 4 ms 548 KB Output is partially correct
29 Partially correct 4 ms 552 KB Output is partially correct
30 Partially correct 4 ms 560 KB Output is partially correct
31 Partially correct 4 ms 552 KB Output is partially correct
32 Partially correct 4 ms 552 KB Output is partially correct
33 Partially correct 5 ms 684 KB Output is partially correct
34 Partially correct 4 ms 552 KB Output is partially correct
35 Partially correct 4 ms 804 KB Output is partially correct
36 Partially correct 4 ms 552 KB Output is partially correct
37 Partially correct 4 ms 556 KB Output is partially correct
38 Partially correct 4 ms 548 KB Output is partially correct
39 Partially correct 5 ms 552 KB Output is partially correct
40 Partially correct 4 ms 556 KB Output is partially correct
41 Partially correct 4 ms 556 KB Output is partially correct
42 Partially correct 4 ms 552 KB Output is partially correct
43 Partially correct 4 ms 556 KB Output is partially correct
44 Partially correct 5 ms 552 KB Output is partially correct
45 Partially correct 4 ms 548 KB Output is partially correct
46 Partially correct 4 ms 804 KB Output is partially correct
47 Partially correct 4 ms 556 KB Output is partially correct
48 Partially correct 4 ms 552 KB Output is partially correct
49 Partially correct 4 ms 548 KB Output is partially correct
50 Partially correct 4 ms 544 KB Output is partially correct
51 Partially correct 4 ms 552 KB Output is partially correct
52 Partially correct 4 ms 556 KB Output is partially correct
53 Partially correct 4 ms 548 KB Output is partially correct
54 Partially correct 4 ms 556 KB Output is partially correct
55 Partially correct 4 ms 548 KB Output is partially correct
56 Partially correct 4 ms 556 KB Output is partially correct
57 Partially correct 4 ms 784 KB Output is partially correct
58 Partially correct 5 ms 552 KB Output is partially correct
59 Partially correct 4 ms 548 KB Output is partially correct
60 Partially correct 4 ms 548 KB Output is partially correct
61 Partially correct 4 ms 544 KB Output is partially correct
62 Correct 0 ms 344 KB Output is correct
63 Correct 0 ms 344 KB Output is correct
64 Correct 0 ms 344 KB Output is correct
65 Correct 0 ms 344 KB Output is correct
66 Correct 0 ms 344 KB Output is correct
67 Correct 0 ms 344 KB Output is correct
68 Correct 0 ms 344 KB Output is correct
69 Correct 0 ms 344 KB Output is correct
70 Correct 0 ms 344 KB Output is correct
71 Correct 0 ms 344 KB Output is correct
72 Correct 0 ms 344 KB Output is correct
73 Correct 0 ms 344 KB Output is correct
74 Correct 0 ms 344 KB Output is correct
75 Correct 0 ms 344 KB Output is correct
76 Correct 0 ms 344 KB Output is correct
77 Correct 0 ms 344 KB Output is correct
78 Correct 0 ms 344 KB Output is correct
79 Correct 0 ms 344 KB Output is correct
80 Correct 0 ms 344 KB Output is correct
81 Correct 0 ms 344 KB Output is correct
82 Correct 0 ms 344 KB Output is correct
83 Correct 1 ms 344 KB Output is correct
84 Correct 0 ms 344 KB Output is correct
85 Correct 0 ms 344 KB Output is correct
86 Correct 0 ms 344 KB Output is correct
87 Correct 0 ms 344 KB Output is correct
88 Correct 0 ms 344 KB Output is correct
89 Correct 0 ms 344 KB Output is correct
90 Correct 0 ms 344 KB Output is correct
91 Correct 0 ms 344 KB Output is correct