Submission #876200

# Submission time Handle Problem Language Result Execution time Memory
876200 2023-11-21T12:08:37 Z winter0101 Harvest (JOI20_harvest) C++14
100 / 100
2158 ms 313288 KB
#include<bits/stdc++.h>
using namespace std;
#define all(fl) fl.begin(),fl.end()
#define pb push_back
#define fi first
#define se second
#define for1(i,j,k) for(int i=j;i<=k;i++)
#define for2(i,j,k) for(int i=j;i>=k;i--)
#define for3(i,j,k,l) for(int i=j;i<=k;i+=l)
#define lb lower_bound
#define ub upper_bound
#define sz(a) (int)a.size()
#define pii pair<int,int>
#define pli pair<long long,int>
#define gcd __gcd
#define lcm(x,y) x*y/__gcd(x,y)
#define lastbit(i) __builtin_ctz(i)
const int maxn=2e5+9;
int a[maxn],b[maxn];
struct BIT{
vector<long long>bit;
int n;
void resz(int _n){
n=_n;
bit.clear();
bit.resize(n+1);
for1(i,1,n)bit[i]=0;
}
void add(int pos,long long val){
for(;pos<=n;pos+=(pos-(pos&(pos-1))))bit[pos]+=val;
}
void del(int pos){
for (;pos<=n;pos+=(pos-(pos&(pos-1))))bit[pos]=0;
}
long long get(int pos){
long long sum=0;
if (pos<0)return 0;
for(;pos>=1;pos-=(pos-(pos&(pos-1))))sum+=bit[pos];
return sum;
}
long long get(int l,int r){
if (l>r)return 0;
return get(r)-get(l-1);
}
};
int id[maxn*2];
#define pil pair<int,long long>
vector<pil>g[maxn*2];//edge
int gr[maxn];//group of cycle
int deg[maxn*2];//deg to remove
bool vis[maxn];//travel in cycle
long long dep[maxn];//dep in cycle
int num=0;
vector<int>cc[maxn];//vertice in each cycle
long long len[maxn];
long long dfs(int u){//dfs cycle
gr[u]=num;
cc[num].pb(u);
long long ans=0;
vis[u]=1;
for (auto v:g[u]){
ans+=v.se;
if (!vis[v.fi]){
vis[v.fi]=1;
dep[v.fi]=dep[u]+v.se;
ans+=dfs(v.fi);
}
}
return ans;
}
vector<pil>rg[maxn*2];//reverse edge
long long d[maxn*2];//dep in tree
vector<pil>h[maxn*2];//apple
int in[maxn*2],out[maxn*2];
int rootincyc[maxn*2];
int tme=0;
pil query[maxn];
int n,m;
void redfs(int u,int root){
if (u>n)h[root].pb({u,d[u]});
rootincyc[u]=root;
in[u]=++tme;
for (auto v:rg[u]){
if (deg[v.fi])continue;
d[v.fi]=d[u]+v.se;
redfs(v.fi,root);
}
out[u]=tme;
}
struct line{
int type;//update or answer
int u;//type of apple of vertice
long long val;//time of dep
int idx;
bool operator < (const line &p)const {
if (val==p.val)return type<p.type;
return val<p.val;
}
};
struct queryt2{
int u;
long long k;
int id;
};
vector<line>quest[maxn];
vector<queryt2>quet[maxn];
long long cum(int u,int v){
if (dep[v]>=dep[u])return dep[v]-dep[u];
return len[gr[u]]-(dep[u]-dep[v]);
}
long long answer[maxn];
//solve for cycle
long long du;
long long value[maxn*2];
long long value_mod[maxn*2];
int pos[maxn];
int revpos[maxn*2];
vector<int>arr[maxn*4];
BIT cnt[maxn*4];
BIT st[maxn*4];
int pos_update[maxn*2][20];
int dep_tree[maxn*4];
void build(int id,int l,int r){
arr[id].clear();
arr[id].resize(r-l+1+1),st[id].resz(r-l+1),cnt[id].resz(r-l+1);
int dd=dep_tree[id];
for1(i,1,r-l+1){
arr[id][i]=pos[i+l-1];
}
sort(arr[id].begin()+1,arr[id].begin()+1+r-l+1,[](int i,int j){
return value[i]<value[j];
});
for1(i,1,r-l+1)pos_update[arr[id][i]][dd]=i;
if (l==r)return;
int mid=(l+r)/2;
dep_tree[id*2]=dep_tree[id*2+1]=dep_tree[id]+1;
build(id*2,l,mid);
build(id*2+1,mid+1,r);
}
void update(int id,int l,int r,int u){
if (revpos[u]<l||revpos[u]>r)return;
long long val=(value[u]-value_mod[u])/du;
int dd=dep_tree[id];
st[id].add(pos_update[u][dd],val);
cnt[id].add(pos_update[u][dd],1);
if (l==r)return;
int mid=(l+r)/2;
update(id*2,l,mid,u);
update(id*2+1,mid+1,r,u);
}
long long get(int id,int l,int r,int u,int v,long long val,bool fl){
if (l>v||r<u||u>v)return 0;
if (u<=l&&r<=v){
    int l1=1,r1=r-l+1,as=-1;
    while (l1<=r1){
    int mid=(l1+r1)/2;
    if (value[arr[id][mid]]<=val){
    as=mid;
    l1=mid+1;
    }
    else r1=mid-1;
    }
    if (as==-1)return 0;
    long long nval=((val%du)+du)%du;
    long long mval=(val-nval)/du;
    long long xxx=cnt[id].get(as);
    return xxx*mval-st[id].get(as)+fl*xxx;
}
int mid=(l+r)/2;
return get(id*2,l,mid,u,v,val,fl)+get(id*2+1,mid+1,r,u,v,val,fl);
}
long long l,c;
long long cal(int i,int j){
if (a[j]>=a[i])return a[j]-a[i];
else return l-(a[i]-a[j]);
}
//
/*
Nhan xet: dung duoc do thi mat troi n+m dinh n+m canh
voi nhung dinh khong thuoc chu trinh thi co the tinh bang sweepline
voi nhung dinh thuoc chu trinh, ta co
goi h[u] la nhung qua tao trong cay u
d[u] la do sau cua 1 thang trong cay
dep[u] la do sau cua 1 dinh trong chu trinh voi viec chon dinh nao do thuoc chu trinh lam goc
thi de tinh cac dinh ma thuoc cycle
goi dinh do la x va thoi gian la k
length la do dai chu trinh
ta se can dem tong (v la apple thuoc chu trinh, d[v]<=k,v la con cua u) (k-d[v])/length+[(k-d[v])%length>=d(u,x)] (d(u,x) la khoang cach tu u den x tren chu trinh)
voi subtask 2 thi khong can quan tam k-d[v] vi k>=1e15 nen co the giai trong nlog^2
subtask 3 neu tiep tuc lam the thi se mat nlog^3
nen ta can co nhan xet (k-d[v])/length+[(k-d[v])%length>=d(u,x)]=((k-d[v]-d(u,x))/length+1)*[k-d[v]-d(u,x)>=0]
chung minh
0<=d(u,x)<length
luu y cac phep chia nay la phep lam tron xuong
neu k-d[v]>0 k-d[v]<d(u,x) thi (k-d[v])/length=0
nen luon can k-d[v]>=d(u,x)
goi p=k-d[v] mod length, q=d(u,x) mod length,p1=k-d[v],q1=d(u,x)
neu p>=q thi (p1-q1)/length thoa man vi p1/length=(p1-q1)/length va p1>=q1
neu p<q thi (p1-q1)/length=(p1/length-1) va tuong tu ta lai thoa man
nen ta co the dua ve tinh tong ((k-d[v]-d(u,x))/length+1)*[k-d[v]-d(u,x)>=0] de kiem soat d(u,x) ta co the sweepline u 2 lan, luu 1 cay segmentree,
moi node la bit quan li cac phan tu tu l->r, segment tree quan li theo modulo va moi node sort theo value tu do dua dpt ve nlog^2
*/
signed main(){
    ios_base::sync_with_stdio(0);
    cin.tie(0);
    //freopen("temp.INP","r",stdin);
    //freopen("temp.OUT","w",stdout);
    cin>>n>>m>>l>>c;
    for1(i,1,n)cin>>a[i];
    for1(i,1,n)id[i]=i;
    for1(i,n+1,2*n)id[i]=id[i-n];
    for1(i,1,n){
    long long w=(c/l)*l;
    int l1=i+1,r1=i+n,ans=-1;
    while (l1<=r1){
    int mid=(l1+r1)/2;
    if (cal(id[mid],i)>=(c%l)){
    ans=mid;
    l1=mid+1;
    }
    else r1=mid-1;
    }
    if (ans==-1)w+=l,ans=i;
    else w+=cal(id[ans],i);
    g[i].pb({id[ans], w});
    deg[id[ans]]++;
    }
    for1(i,1,m){
    cin>>b[i];
    int l1=1,r1=n,ans=n;
    while (l1<=r1){
    int mid=(l1+r1)/2;
    if (a[mid]<=b[i]){
    ans=mid;
    l1=mid+1;
    }
    else r1=mid-1;
    }
    if (a[ans]<=b[i])g[i+n].pb({ans,b[i]-a[ans]});
    else g[i+n].pb({ans,l-(a[ans]-b[i])});
    }
    queue<int>t;
    for1(i,1,n){
    if (!deg[i]){
    t.push(i);
    }
    }
    while (!t.empty()){
    auto u=t.front();
    t.pop();
    for (auto v:g[u]){
    deg[v.fi]--;
    if (!deg[v.fi]){
    t.push(v.fi);
    }
    }
    }
    vector<long long>cyc;
    num=0;
    for1(i,1,n){
    if (!deg[i]||vis[i])continue;
    //detect cycle
    num++;
    len[num]=dfs(i);
    }
    for1(i,1,n+m){
    for (auto v:g[i]){
    rg[v.fi].pb({i,v.se});
    }
    }
    for1(i,1,n){
    if (deg[i]){
    redfs(i,i);
    }
    }
    int q;
    cin>>q;
    for1(i,1,q){
    cin>>query[i].fi>>query[i].se;
    if (!deg[query[i].fi]){
    quest[rootincyc[query[i].fi]].pb({2,query[i].fi,query[i].se+d[query[i].fi],i});
    }
    else {
    quet[query[i].fi].pb({query[i].fi,query[i].se,i});
    }
    }
    BIT bit;
    bit.resz(n+m);
    for1(i,1,n){
    if (deg[i]){
    vector<line>sol;
    for (auto v:h[i]){
    sol.pb({1,v.fi,v.se,0});
    }
    for (auto v:quest[i]){
    sol.pb(v);
    }
    vector<line>().swap(quest[i]);
    sort(all(sol));
    for (auto v:sol){
    if (v.type==1){
    bit.add(in[v.u],1);
    }
    else {
    answer[v.idx]=bit.get(in[v.u],out[v.u]);
    }
    }
    for (auto v:sol){
    if (v.type==1)bit.del(in[v.u]);
    }
    }
    }
    //d dep in tree
    //dep dep in cycle
    for1(i,1,num){
    du=len[i];
    int nlen=0;
    for(auto u:cc[i]){
    for (auto v:h[u]){
    value[v.fi]=(v.se-dep[u]);
    value_mod[v.fi]=((value[v.fi]%du)+du)%du;
    pos[++nlen]=v.fi;
    }
    }
    if (nlen==0)continue;
    sort(pos+1,pos+nlen+1,[](int x,int y){
    return value_mod[x]<value_mod[y];
    });
    for1(j,1,nlen){
    revpos[pos[j]]=j;
    }
    build(1,1,nlen);
    for(auto u:cc[i]){
    for (auto v:h[u])update(1,1,nlen,v.fi);
    for (auto v:quet[u]){
    int l1=1,r1=nlen,p=0;
    long long val=v.k-dep[v.u];
    long long nval=((val%du)+du)%du;
    while (l1<=r1){
        int mid=(l1+r1)/2;
        if (value_mod[pos[mid]]<=nval){
        p=mid;
        l1=mid+1;
        }
        else r1=mid-1;
    }
    answer[v.id]+=get(1,1,nlen,1,p,val,1)+get(1,1,nlen,p+1,nlen,val,0);
    }
    }
    nlen=0;
    for(auto u:cc[i]){
    for (auto v:h[u]){
    value[v.fi]=(v.se-dep[u]);
    value_mod[v.fi]=((value[v.fi]%du)+du)%du;
    pos[++nlen]=v.fi;
    }
    }
    sort(pos+1,pos+nlen+1,[](int x,int y){
    return value_mod[x]<value_mod[y];
    });
    for1(j,1,nlen){
    revpos[pos[j]]=j;
    }
    build(1,1,nlen);
    reverse(all(cc[i]));
    for(auto u:cc[i]){
    for (auto v:quet[u]){
    int l1=1,r1=nlen,p=0;
    long long val=v.k-dep[v.u]-len[i];
    long long nval=((val%du)+du)%du;
    while (l1<=r1){
        int mid=(l1+r1)/2;
        if (value_mod[pos[mid]]<=nval){
        p=mid;
        l1=mid+1;
        }
        else r1=mid-1;
    }
    answer[v.id]+=get(1,1,nlen,1,p,val,1)+get(1,1,nlen,p+1,nlen,val,0);
    }
    for (auto v:h[u]){
    update(1,1,nlen,v.fi);
    }
    }
    }
    //
    for1(i,1,q){
    if (!deg[query[i].fi])cout<<answer[i]<<'\n';
    else cout<<answer[i]<<'\n';
    }
}
# Verdict Execution time Memory Grader output
1 Correct 48 ms 123740 KB Output is correct
2 Correct 28 ms 124764 KB Output is correct
3 Correct 32 ms 125784 KB Output is correct
4 Correct 33 ms 125572 KB Output is correct
5 Correct 33 ms 125980 KB Output is correct
6 Correct 33 ms 125748 KB Output is correct
7 Correct 33 ms 125784 KB Output is correct
8 Correct 32 ms 125520 KB Output is correct
9 Correct 32 ms 125520 KB Output is correct
10 Correct 33 ms 125484 KB Output is correct
11 Correct 32 ms 125672 KB Output is correct
12 Correct 33 ms 126044 KB Output is correct
13 Correct 35 ms 126032 KB Output is correct
14 Correct 34 ms 125276 KB Output is correct
15 Correct 32 ms 125784 KB Output is correct
16 Correct 33 ms 125788 KB Output is correct
17 Correct 37 ms 126180 KB Output is correct
18 Correct 33 ms 126040 KB Output is correct
19 Correct 34 ms 125780 KB Output is correct
20 Correct 34 ms 125788 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 312 ms 137240 KB Output is correct
2 Correct 165 ms 155052 KB Output is correct
3 Correct 143 ms 160340 KB Output is correct
4 Correct 359 ms 162008 KB Output is correct
5 Correct 168 ms 178172 KB Output is correct
6 Correct 164 ms 178152 KB Output is correct
7 Correct 148 ms 157488 KB Output is correct
8 Correct 149 ms 157500 KB Output is correct
9 Correct 395 ms 170968 KB Output is correct
10 Correct 158 ms 169372 KB Output is correct
11 Correct 470 ms 169972 KB Output is correct
12 Correct 452 ms 170048 KB Output is correct
13 Correct 492 ms 169936 KB Output is correct
14 Correct 182 ms 168080 KB Output is correct
15 Correct 366 ms 164088 KB Output is correct
16 Correct 160 ms 168940 KB Output is correct
17 Correct 156 ms 168688 KB Output is correct
18 Correct 127 ms 147252 KB Output is correct
19 Correct 115 ms 147080 KB Output is correct
20 Correct 146 ms 154960 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 48 ms 123740 KB Output is correct
2 Correct 28 ms 124764 KB Output is correct
3 Correct 32 ms 125784 KB Output is correct
4 Correct 33 ms 125572 KB Output is correct
5 Correct 33 ms 125980 KB Output is correct
6 Correct 33 ms 125748 KB Output is correct
7 Correct 33 ms 125784 KB Output is correct
8 Correct 32 ms 125520 KB Output is correct
9 Correct 32 ms 125520 KB Output is correct
10 Correct 33 ms 125484 KB Output is correct
11 Correct 32 ms 125672 KB Output is correct
12 Correct 33 ms 126044 KB Output is correct
13 Correct 35 ms 126032 KB Output is correct
14 Correct 34 ms 125276 KB Output is correct
15 Correct 32 ms 125784 KB Output is correct
16 Correct 33 ms 125788 KB Output is correct
17 Correct 37 ms 126180 KB Output is correct
18 Correct 33 ms 126040 KB Output is correct
19 Correct 34 ms 125780 KB Output is correct
20 Correct 34 ms 125788 KB Output is correct
21 Correct 312 ms 137240 KB Output is correct
22 Correct 165 ms 155052 KB Output is correct
23 Correct 143 ms 160340 KB Output is correct
24 Correct 359 ms 162008 KB Output is correct
25 Correct 168 ms 178172 KB Output is correct
26 Correct 164 ms 178152 KB Output is correct
27 Correct 148 ms 157488 KB Output is correct
28 Correct 149 ms 157500 KB Output is correct
29 Correct 395 ms 170968 KB Output is correct
30 Correct 158 ms 169372 KB Output is correct
31 Correct 470 ms 169972 KB Output is correct
32 Correct 452 ms 170048 KB Output is correct
33 Correct 492 ms 169936 KB Output is correct
34 Correct 182 ms 168080 KB Output is correct
35 Correct 366 ms 164088 KB Output is correct
36 Correct 160 ms 168940 KB Output is correct
37 Correct 156 ms 168688 KB Output is correct
38 Correct 127 ms 147252 KB Output is correct
39 Correct 115 ms 147080 KB Output is correct
40 Correct 146 ms 154960 KB Output is correct
41 Correct 931 ms 284616 KB Output is correct
42 Correct 257 ms 196824 KB Output is correct
43 Correct 133 ms 160736 KB Output is correct
44 Correct 1633 ms 295184 KB Output is correct
45 Correct 896 ms 304184 KB Output is correct
46 Correct 925 ms 307412 KB Output is correct
47 Correct 892 ms 308636 KB Output is correct
48 Correct 834 ms 307512 KB Output is correct
49 Correct 827 ms 308820 KB Output is correct
50 Correct 743 ms 288324 KB Output is correct
51 Correct 757 ms 288792 KB Output is correct
52 Correct 1932 ms 311748 KB Output is correct
53 Correct 2158 ms 313288 KB Output is correct
54 Correct 1927 ms 311708 KB Output is correct
55 Correct 1317 ms 310676 KB Output is correct
56 Correct 982 ms 298100 KB Output is correct
57 Correct 993 ms 298168 KB Output is correct
58 Correct 996 ms 299112 KB Output is correct
59 Correct 863 ms 297140 KB Output is correct
60 Correct 834 ms 297920 KB Output is correct
61 Correct 842 ms 298244 KB Output is correct
62 Correct 1776 ms 254740 KB Output is correct
63 Correct 793 ms 282080 KB Output is correct
64 Correct 790 ms 281808 KB Output is correct
65 Correct 794 ms 282320 KB Output is correct
66 Correct 769 ms 281040 KB Output is correct
67 Correct 758 ms 281456 KB Output is correct
68 Correct 777 ms 280800 KB Output is correct
69 Correct 927 ms 288724 KB Output is correct
70 Correct 881 ms 288756 KB Output is correct
71 Correct 972 ms 289028 KB Output is correct
72 Correct 1072 ms 288860 KB Output is correct