Submission #868041

# Submission time Handle Problem Language Result Execution time Memory
868041 2023-10-30T09:58:08 Z vjudge1 Werewolf (IOI18_werewolf) C++17
100 / 100
1873 ms 226088 KB
#include "werewolf.h"
using namespace std;
#include <bits/stdc++.h>
class tree_t {
       public:
        int N, timer;
        vector<int> tin, tout, a;
        vector<vector<int>> g, par;

        tree_t(int N = 0) : N(N), tin(N), tout(N), g(N), timer(0), a(N), par(__lg(N) + 1, vector<int>(N)) {}

        void dfs(int u, int p) {
                tin[u] = timer++;
                par[0][u] = p;
                for (int i = 1; i <= __lg(N); i++) par[i][u] = par[i - 1][par[i - 1][u]];
                for (int v : g[u]) dfs(v, u);
                tout[u] = timer;
        }
};

class segtree_t {
       public:
        segtree_t *left, *right;
        vector<int> val;
        int l, r, m;

        segtree_t(int l, int r) : l(l), r(r), m(l + r >> 1), val() {
                if (l == r) return;
                left = new segtree_t(l, m);
                right = new segtree_t(m + 1, r);
        }

        void Update(int x, int y) {
                val.emplace_back(y);
                if (l == r) return;
                if (x <= m) {
                        left->Update(x, y);
                } else {
                        right->Update(x, y);
                }
        }

        void Sort() {
                sort(val.begin(), val.end());
                if (l == r) return;
                left->Sort(), right->Sort();
        }

        bool Get(int lx, int rx, int ly, int ry) {
                if (l > rx || r < lx) return 0;
                if (lx <= l && r <= rx) return lower_bound(val.begin(), val.end(), ry) - lower_bound(val.begin(), val.end(), ly);
                return left->Get(lx, rx, ly, ry) || right->Get(lx, rx, ly, ry);
        }
};

std::vector<int> check_validity(int N, std::vector<int> X, std::vector<int> Y,
                                std::vector<int> S, std::vector<int> E,
                                std::vector<int> L, std::vector<int> R) {
        int M = X.size(), Q = L.size();
        vector<vector<int>> adj(N);

        for (int i = 0; i < M; i++) adj[X[i]].emplace_back(Y[i]);
        for (int i = 0; i < M; i++) adj[Y[i]].emplace_back(X[i]);

        vector<int> par(N, -1);

        function<int(int)> root = [&](int u) { return par[u] < 0 ? u : (par[u] = root(par[u])); };

        int cur_N = N;

        tree_t TL(N * 2 - 1), TR(N * 2 - 1);

        for (int i = 0; i < N; i++) {
                TL.a[i] = i;
                for (int j : adj[i]) {
                        if (j >= i) continue;
                        int u = root(i), v = root(j);
                        if (u == v) continue;
                        par.emplace_back(par[u] + par[v]);
                        TL.g[cur_N].emplace_back(u);
                        TL.g[cur_N].emplace_back(v);
                        TL.a[cur_N] = i;
                        par[u] = par[v] = cur_N++;
                }
        }

        par = vector<int>(N, -1);
        cur_N = N;

        for (int i = N - 1; i >= 0; i--) {
                TR.a[i] = i;
                for (int j : adj[i]) {
                        if (j <= i) continue;
                        int u = root(i), v = root(j);
                        if (u == v) continue;
                        par.emplace_back(par[u] + par[v]);
                        TR.g[cur_N].emplace_back(u);
                        TR.g[cur_N].emplace_back(v);
                        TR.a[cur_N] = i;
                        par[u] = par[v] = cur_N++;
                }
        }

        const int Root = N * 2 - 1;

        TL.dfs(Root - 1, Root - 1);
        TR.dfs(Root - 1, Root - 1);
        segtree_t *tree = new segtree_t(0, Root);

        for (int i = 0; i < N; i++) {
                int x = TL.tin[i], y = TR.tin[i];
                tree->Update(x, y);
        }
        tree->Sort();

        vector<int> ans;

        for (int i = 0; i < Q; i++) {
                int s = S[i], e = E[i], l = L[i], r = R[i];
                for (int j = __lg(Root); j >= 0; j--) {
                        if (TR.a[TR.par[j][s]] >= l) s = TR.par[j][s];
                        if (TL.a[TL.par[j][e]] <= r) e = TL.par[j][e];
                }
                ans.emplace_back(tree->Get(TL.tin[e], TL.tout[e] - 1, TR.tin[s], TR.tout[s]));
        }

        return ans;
}

Compilation message

werewolf.cpp: In constructor 'tree_t::tree_t(int)':
werewolf.cpp:8:29: warning: 'tree_t::g' will be initialized after [-Wreorder]
    8 |         vector<vector<int>> g, par;
      |                             ^
werewolf.cpp:6:16: warning:   'int tree_t::timer' [-Wreorder]
    6 |         int N, timer;
      |                ^~~~~
werewolf.cpp:10:9: warning:   when initialized here [-Wreorder]
   10 |         tree_t(int N = 0) : N(N), tin(N), tout(N), g(N), timer(0), a(N), par(__lg(N) + 1, vector<int>(N)) {}
      |         ^~~~~~
werewolf.cpp: In constructor 'segtree_t::segtree_t(int, int)':
werewolf.cpp:27:51: warning: suggest parentheses around '+' inside '>>' [-Wparentheses]
   27 |         segtree_t(int l, int r) : l(l), r(r), m(l + r >> 1), val() {
      |                                                 ~~^~~
werewolf.cpp:25:19: warning: 'segtree_t::m' will be initialized after [-Wreorder]
   25 |         int l, r, m;
      |                   ^
werewolf.cpp:24:21: warning:   'std::vector<int> segtree_t::val' [-Wreorder]
   24 |         vector<int> val;
      |                     ^~~
werewolf.cpp:27:9: warning:   when initialized here [-Wreorder]
   27 |         segtree_t(int l, int r) : l(l), r(r), m(l + r >> 1), val() {
      |         ^~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 8 ms 3164 KB Output is correct
11 Correct 8 ms 3416 KB Output is correct
12 Correct 7 ms 3168 KB Output is correct
13 Correct 8 ms 3160 KB Output is correct
14 Correct 8 ms 3164 KB Output is correct
15 Correct 8 ms 3252 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1691 ms 206944 KB Output is correct
2 Correct 1188 ms 209960 KB Output is correct
3 Correct 1122 ms 207796 KB Output is correct
4 Correct 1367 ms 206996 KB Output is correct
5 Correct 1501 ms 206872 KB Output is correct
6 Correct 1712 ms 206660 KB Output is correct
7 Correct 1570 ms 206976 KB Output is correct
8 Correct 1135 ms 210152 KB Output is correct
9 Correct 927 ms 207864 KB Output is correct
10 Correct 689 ms 206828 KB Output is correct
11 Correct 756 ms 215264 KB Output is correct
12 Correct 1004 ms 215336 KB Output is correct
13 Correct 1408 ms 220888 KB Output is correct
14 Correct 1336 ms 221220 KB Output is correct
15 Correct 1296 ms 221032 KB Output is correct
16 Correct 1389 ms 221404 KB Output is correct
17 Correct 1494 ms 215716 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 8 ms 3164 KB Output is correct
11 Correct 8 ms 3416 KB Output is correct
12 Correct 7 ms 3168 KB Output is correct
13 Correct 8 ms 3160 KB Output is correct
14 Correct 8 ms 3164 KB Output is correct
15 Correct 8 ms 3252 KB Output is correct
16 Correct 1691 ms 206944 KB Output is correct
17 Correct 1188 ms 209960 KB Output is correct
18 Correct 1122 ms 207796 KB Output is correct
19 Correct 1367 ms 206996 KB Output is correct
20 Correct 1501 ms 206872 KB Output is correct
21 Correct 1712 ms 206660 KB Output is correct
22 Correct 1570 ms 206976 KB Output is correct
23 Correct 1135 ms 210152 KB Output is correct
24 Correct 927 ms 207864 KB Output is correct
25 Correct 689 ms 206828 KB Output is correct
26 Correct 756 ms 215264 KB Output is correct
27 Correct 1004 ms 215336 KB Output is correct
28 Correct 1408 ms 220888 KB Output is correct
29 Correct 1336 ms 221220 KB Output is correct
30 Correct 1296 ms 221032 KB Output is correct
31 Correct 1389 ms 221404 KB Output is correct
32 Correct 1494 ms 215716 KB Output is correct
33 Correct 1873 ms 215808 KB Output is correct
34 Correct 203 ms 32464 KB Output is correct
35 Correct 1786 ms 219232 KB Output is correct
36 Correct 1828 ms 215688 KB Output is correct
37 Correct 1761 ms 217784 KB Output is correct
38 Correct 1763 ms 216364 KB Output is correct
39 Correct 1717 ms 222824 KB Output is correct
40 Correct 1262 ms 224944 KB Output is correct
41 Correct 1091 ms 217204 KB Output is correct
42 Correct 851 ms 215800 KB Output is correct
43 Correct 1181 ms 222832 KB Output is correct
44 Correct 1363 ms 218000 KB Output is correct
45 Correct 1101 ms 222812 KB Output is correct
46 Correct 1033 ms 222588 KB Output is correct
47 Correct 1261 ms 219432 KB Output is correct
48 Correct 1238 ms 219256 KB Output is correct
49 Correct 1228 ms 219688 KB Output is correct
50 Correct 1284 ms 219796 KB Output is correct
51 Correct 984 ms 226088 KB Output is correct
52 Correct 982 ms 225924 KB Output is correct