답안 #865796

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
865796 2023-10-24T16:13:20 Z azimanov 수열 (BOI14_sequence) C++17
42 / 100
727 ms 96104 KB
#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

template<int mod>
class Modular {
public:
    int val;
    Modular() : val(0) {}
    Modular(int new_val) : val(new_val) {
    }
    friend Modular operator+(const Modular& a, const Modular& b) {
        if (a.val + b.val >= mod) return a.val + b.val - mod;
        else return a.val + b.val;
    }
    friend Modular operator-(const Modular& a, const Modular& b) {
        if (a.val - b.val < 0) return a.val - b.val + mod;
        else return a.val - b.val;
    }
    friend Modular operator*(const Modular& a, const Modular& b) {
        return 1ll * a.val * b.val % mod;
    }
    friend Modular binpow(Modular a, long long n) {
        Modular res = 1;
        for (; n; n >>= 1) {
            if (n & 1) res *= a;
            a *= a;
        }
        return res;
    }
    /* ALTERNATIVE INVERSE FUNCTION USING EXTENDED EUCLIDEAN ALGORITHM
    friend void gcd(int a, int b, Modular& x, Modular& y) {
        if (a == 0) {
            x = Modular(0);
            y = Modular(1);
            return;
        }
        Modular x1, y1;
        gcd(b % a, a, x1, y1);
        x = y1 - (b / a) * x1;
        y = x1;
    }
    friend Modular inv(const Modular& a) {
        Modular x, y;
        gcd(a.val, mod, x, y);
        return x;
    }
    */
    friend Modular inv(const Modular& a) {
        return binpow(a, mod - 2);
    }
    Modular operator/(const Modular& ot) const {
        return *this * inv(ot);
    }
    Modular& operator++() {
        if (val + 1 == mod) val = 0;
        else ++val;
        return *this;
    }
    Modular operator++(int) {
        Modular tmp = *this;
        ++(*this);
        return tmp;
    }
    Modular operator+() const {
        return *this;
    }
    Modular operator-() const {
        return 0 - *this;
    }
    Modular& operator+=(const Modular& ot) {
        return *this = *this + ot;
    }
    Modular& operator-=(const Modular& ot) {
        return *this = *this - ot;
    }
    Modular& operator*=(const Modular& ot) {
        return *this = *this * ot;
    }
    Modular& operator/=(const Modular& ot) {
        return *this = *this / ot;
    }
    bool operator==(const Modular& ot) const {
        return val == ot.val;
    }
    bool operator!=(const Modular& ot) const {
        return val != ot.val;
    }
    bool operator<(const Modular& ot) const {
        return val < ot.val;
    }
    bool operator>(const Modular& ot) const {
        return val > ot.val;
    }
    explicit operator int() const {
        return val;
    }
};

template <int mod>
Modular<mod> any_to_mint(ll a) {
    a %= mod;
    return a < 0 ? a + mod : a;
}

template<int mod>
istream& operator>>(istream& istr, Modular<mod>& x) {
    return istr >> x.val;
}

template<int mod>
ostream& operator<<(ostream& ostr, const Modular<mod>& x) {
    return ostr << x.val;
}

template <int mod = 998244353, int root = 3>
class NTT {
    using Mint = Modular<mod>;
public:
    static vector<int> mult(const vector<int>& a, const vector<int>& b) {
        vector<Mint> amod(a.size());
        vector<Mint> bmod(b.size());
        for (int i = 0; i < a.size(); i++) {
            amod[i] = any_to_mint<mod>(a[i]);
        }
        for (int i = 0; i < b.size(); i++) {
            bmod[i] = any_to_mint<mod>(b[i]);
        }
        vector<Mint> resmod = mult(amod, bmod);
        vector<int> res(resmod.size());
        for (int i = 0; i < res.size(); i++) {
            res[i] = resmod[i].val;
        }
        return res;
    }
    static vector<Mint> mult(const vector<Mint>& a, const vector<Mint>& b) {
        int n = int(a.size()), m = int(b.size());
        if (!n || !m) return {};
        int lg = 0;
        while ((1 << lg) < n + m - 1) lg++;
        int z = 1 << lg;
        auto a2 = a, b2 = b;
        a2.resize(z);
        b2.resize(z);
        nft(false, a2);
        nft(false, b2);
        for (int i = 0; i < z; i++) a2[i] *= b2[i];
        nft(true, a2);
        a2.resize(n + m - 1);
        Mint iz = inv(Mint(z));
        for (int i = 0; i < n + m - 1; i++) a2[i] *= iz;
        return a2;
    }

private:
    static void nft(bool type, vector<Modular<mod>> &a) {
        int n = int(a.size()), s = 0;
        while ((1 << s) < n) s++;
        assert(1 << s == n);
        static vector<Mint> ep, iep;
        while (int(ep.size()) <= s) {
            ep.push_back(binpow(Mint(root), (mod - 1) / (1 << ep.size())));
            iep.push_back(inv(ep.back()));
        }
        vector<Mint> b(n);
        for (int i = 1; i <= s; i++) {
            int w = 1 << (s - i);
            Mint base = type ? iep[i] : ep[i], now = 1;
            for (int y = 0; y < n / 2; y += w) {
                for (int x = 0; x < w; x++) {
                    auto l = a[y << 1 | x];
                    auto r = now * a[y << 1 | x | w];
                    b[y | x] = l + r;
                    b[y | x | n >> 1] = l - r;
                }
                now *= base;
            }
            swap(a, b);
        }
    }
};

const ll inf = 1e18;
const int C = 10;
const int N = 2e5 + 10;
const int M = 1e6 + 1e5 + 10;

int cnt_suf[C][M];

int flag[N];
ll dp[(1 << C)][(1 << C)];

int rig_true[C][N];

int b[N];
int lef[C][N], rig[C][N];
int pref[C][N], suf[C][N];

bool getbit(int mask, int bit) {
    return mask & (1 << bit);
}

ll mask_to_ll(int mask) {
    ll res = 0;
    for (int i = 1; i < C; i++) {
        if (getbit(mask, i)) {
            res = res * 10 + i;
            mask ^= (1 << i);
            break;
        }
    }
    for (int i = 0; i < C; i++) {
        if (getbit(mask, i)) {
            res = res * 10 + i;
        }
    }
    return res;
}

int vec_to_mask(const vector<int>& vec) {
    int mask = 0;
    for (int i : vec) {
        mask |= (1 << i);
    }
    return mask;
}

void init() {
    {
        for (int x = M - 1; x >= 1; x /= 10) {
            cnt_suf[x % 10][M - 1]++;
        }
    }
    for (int i = M - 2; i >= 1; i--) {
        int mask = 0;
        for (int x = i; x >= 1; x /= 10) {
            mask |= (1 << (x % 10));
        }
        for (int c = 0; c < C; c++) {
            if (getbit(mask, c)) {
                cnt_suf[c][i] = cnt_suf[c][i + 1] + 1;
            } else {
                cnt_suf[c][i] = 0;
            }
        }
    }

    flag[0] = (1 << 0);
    for (int i = 1; i <= N - 1; i++) {
        for (int j = i; j >= 1; j /= 10) {
            flag[i] |= (1 << (j % 10));
        }
    }

    for (int i = 0; i < (1 << C); i++) {
        for (int j = 0; j < (1 << C); j++) {
            dp[i][j] = inf;
        }
    }
    for (int mask = 0; mask < (1 << C); mask++) {
        for (int last = 0; last < C && last != 9; last++) {
            int pref_mask = mask | (1 << last);
            int suf_mask = mask | (1 << (last + 1));
            if (mask_to_ll(mask) != 0 || last != 0) {
                dp[pref_mask][suf_mask] = min(dp[pref_mask][suf_mask], mask_to_ll(mask == 1 ? 3 : mask) * 10 + last);
            }

            pref_mask = mask | (mask == 0 && last == 0 ? 0 : (1 << last)) | (1 << 9);
            suf_mask = mask | (1 << (last + 1)) | (1 << 0);
            dp[pref_mask][suf_mask] = min(dp[pref_mask][suf_mask], mask_to_ll(mask == 1 ? 3 : mask) * 100 + last * 10 + 9);
        }
    }
    for (int i = (1 << C) - 1; i >= 0; i--) {
        for (int j = (1 << C) - 1; j >= 0; j--) {
            for (int c = 0; c < C; c++) {
                dp[i][j] = min(dp[i][j], dp[i | (1 << c)][j]);
                dp[i][j] = min(dp[i][j], dp[i][j | (1 << c)]);
            }
        }
    }
}

void calc_lef_rig(int k) {
    const int n = 200'000;
    for (int c = 0; c < C; c++) {
        vector<int> p(n, 0);
        vector<int> q(k, 0);
        for (int i = 0; i < n; i++) {
            p[i] = getbit(flag[i], c);
        }
        for (int i = 1; i <= k; i++) {
            q[k - i] = b[i] == c;
        }
        auto r = NTT<998244353, 3>::mult(p, q);
        for (int i = 0; i < n; i++) {
            lef[c][i] = r[i];
            rig[c][i] = rig_true[c][i] = r[i + k - 1];
        }
    }
    {
        vector<int> p(n, 0);
        vector<int> q(k, 0);
        for (int i = 0; i < n; i++) {
            int new_flag = flag[i];
            if (i < 9'999) {
                new_flag |= (1 << 0);
            }
            p[i] = getbit(new_flag, 0);
        }
        for (int i = 1; i <= k; i++) {
            q[k - i] = b[i] == 0;
        }
        auto r = NTT<998244353, 3>::mult(p, q);
        for (int i = 0; i < n; i++) {
            lef[0][i] = r[i];
            rig[0][i] = r[i + k - 1];
        }
    }
}

void calc_pref_suf(int k) {
    for (int c = 0; c < C; c++) {
        pref[c][0] = 0;
        suf[c][k + 1] = 0;
    }
    for (int i = 1; i <= k; i++) {
        for (int c = 0; c < C; c++) {
            pref[c][i] = pref[c][i - 1];
        }
        pref[b[i]][i]++;
    }
    for (int i = k; i >= 1; i--) {
        for (int c = 0; c < C; c++) {
            suf[c][i] = suf[c][i + 1];
        }
        suf[b[i]][i]++;
    }
}

ll solve_small(int k) {
    const int n = 100'000;
    for (int i = 1; i < n; i++) {
        bool ok = true;
        for (int c = 0; c < C; c++) {
            ok &= rig_true[c][i] == pref[c][k];
        }
        if (ok) {
            return i;
        }
    }
    return inf;
}

ll solve(int k) {
    calc_lef_rig(k);
    calc_pref_suf(k);

    const int n = 100'000;
    ll ans = inf;

    ans = min(ans, solve_small(k));

    for (int i = 0; i < n; i++) {
        if (i + k - 1 < n) {
            int need = 0;
            for (int c = 0; c < C; c++) {
                if (rig[c][i] != pref[c][k]) {
                    need |= (1 << c);
                }
            }
            ans = min(ans, dp[need][0] * n + i);
        } else {
            int len_pref = n - i;
            int len_suf = k - len_pref;
            int need_pref = 0, need_suf = 0;
            for (int c = 0; c < C; c++) {
                if (rig[c][i] != pref[c][len_pref]) {
                    need_pref |= (1 << c);
                }
                if (lef[c][len_suf - 1] != suf[c][k - len_suf + 1]) {
                    need_suf |= (1 << c);
                }
            }
            ans = min(ans, dp[need_pref][need_suf] * n + i);
        }
    }
    return ans;
}

int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
#ifdef LOCAL
    freopen("input.txt", "r", stdin);
#endif

    init();

    int k;
    cin >> k;
    for (int i = 1; i <= k; i++) {
        cin >> b[i];
    }

    cout << solve(k) << "\n";

#ifdef LOCAL
    cout << "\nTime elapsed: " << double(clock()) / CLOCKS_PER_SEC << " s.\n";
#endif
}

Compilation message

sequence.cpp: In instantiation of 'static std::vector<int> NTT<mod, root>::mult(const std::vector<int>&, const std::vector<int>&) [with int mod = 998244353; int root = 3]':
sequence.cpp:296:46:   required from here
sequence.cpp:125:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  125 |         for (int i = 0; i < a.size(); i++) {
      |                         ~~^~~~~~~~~~
sequence.cpp:128:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  128 |         for (int i = 0; i < b.size(); i++) {
      |                         ~~^~~~~~~~~~
sequence.cpp:133:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  133 |         for (int i = 0; i < res.size(); i++) {
      |                         ~~^~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 394 ms 93052 KB Output is correct
2 Correct 383 ms 94688 KB Output is correct
3 Correct 390 ms 93084 KB Output is correct
4 Correct 385 ms 93020 KB Output is correct
5 Correct 385 ms 92980 KB Output is correct
6 Correct 387 ms 92968 KB Output is correct
7 Correct 386 ms 93036 KB Output is correct
8 Correct 388 ms 94616 KB Output is correct
9 Correct 382 ms 94512 KB Output is correct
10 Correct 384 ms 94640 KB Output is correct
11 Correct 383 ms 94604 KB Output is correct
12 Correct 393 ms 93132 KB Output is correct
13 Correct 387 ms 92976 KB Output is correct
14 Correct 389 ms 94868 KB Output is correct
15 Correct 386 ms 94608 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 395 ms 93260 KB Output is correct
2 Correct 386 ms 94648 KB Output is correct
3 Correct 393 ms 93256 KB Output is correct
4 Correct 388 ms 93068 KB Output is correct
5 Correct 391 ms 92948 KB Output is correct
6 Correct 389 ms 93092 KB Output is correct
7 Correct 389 ms 94700 KB Output is correct
8 Correct 394 ms 93124 KB Output is correct
9 Correct 391 ms 94592 KB Output is correct
10 Correct 383 ms 94604 KB Output is correct
11 Correct 390 ms 94732 KB Output is correct
12 Correct 382 ms 94664 KB Output is correct
13 Correct 392 ms 94496 KB Output is correct
14 Correct 391 ms 93084 KB Output is correct
15 Correct 387 ms 93012 KB Output is correct
16 Correct 391 ms 94532 KB Output is correct
17 Correct 392 ms 94616 KB Output is correct
18 Correct 390 ms 93280 KB Output is correct
19 Correct 384 ms 94608 KB Output is correct
20 Correct 384 ms 94532 KB Output is correct
21 Correct 384 ms 94544 KB Output is correct
22 Correct 388 ms 94612 KB Output is correct
23 Correct 384 ms 94640 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 390 ms 94800 KB Output is correct
2 Correct 385 ms 94820 KB Output is correct
3 Correct 392 ms 94848 KB Output is correct
4 Incorrect 385 ms 94844 KB Output isn't correct
5 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 392 ms 93220 KB Output is correct
2 Correct 385 ms 94608 KB Output is correct
3 Correct 393 ms 93084 KB Output is correct
4 Correct 387 ms 93088 KB Output is correct
5 Correct 395 ms 95372 KB Output is correct
6 Correct 388 ms 93084 KB Output is correct
7 Correct 395 ms 93124 KB Output is correct
8 Correct 384 ms 94652 KB Output is correct
9 Correct 388 ms 93124 KB Output is correct
10 Correct 386 ms 94608 KB Output is correct
11 Incorrect 727 ms 96104 KB Output isn't correct
12 Halted 0 ms 0 KB -