Submission #865636

# Submission time Handle Problem Language Result Execution time Memory
865636 2023-10-24T12:47:23 Z azimanov Sequence (BOI14_sequence) C++17
42 / 100
336 ms 26524 KB
#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

template<int mod>
class Modular {
public:
    int val;
    Modular() : val(0) {}
    Modular(int new_val) : val(new_val) {
    }
    friend Modular operator+(const Modular& a, const Modular& b) {
        if (a.val + b.val >= mod) return a.val + b.val - mod;
        else return a.val + b.val;
    }
    friend Modular operator-(const Modular& a, const Modular& b) {
        if (a.val - b.val < 0) return a.val - b.val + mod;
        else return a.val - b.val;
    }
    friend Modular operator*(const Modular& a, const Modular& b) {
        return 1ll * a.val * b.val % mod;
    }
    friend Modular binpow(Modular a, long long n) {
        Modular res = 1;
        for (; n; n >>= 1) {
            if (n & 1) res *= a;
            a *= a;
        }
        return res;
    }
    /* ALTERNATIVE INVERSE FUNCTION USING EXTENDED EUCLIDEAN ALGORITHM
    friend void gcd(int a, int b, Modular& x, Modular& y) {
        if (a == 0) {
            x = Modular(0);
            y = Modular(1);
            return;
        }
        Modular x1, y1;
        gcd(b % a, a, x1, y1);
        x = y1 - (b / a) * x1;
        y = x1;
    }
    friend Modular inv(const Modular& a) {
        Modular x, y;
        gcd(a.val, mod, x, y);
        return x;
    }
    */
    friend Modular inv(const Modular& a) {
        return binpow(a, mod - 2);
    }
    Modular operator/(const Modular& ot) const {
        return *this * inv(ot);
    }
    Modular& operator++() {
        if (val + 1 == mod) val = 0;
        else ++val;
        return *this;
    }
    Modular operator++(int) {
        Modular tmp = *this;
        ++(*this);
        return tmp;
    }
    Modular operator+() const {
        return *this;
    }
    Modular operator-() const {
        return 0 - *this;
    }
    Modular& operator+=(const Modular& ot) {
        return *this = *this + ot;
    }
    Modular& operator-=(const Modular& ot) {
        return *this = *this - ot;
    }
    Modular& operator*=(const Modular& ot) {
        return *this = *this * ot;
    }
    Modular& operator/=(const Modular& ot) {
        return *this = *this / ot;
    }
    bool operator==(const Modular& ot) const {
        return val == ot.val;
    }
    bool operator!=(const Modular& ot) const {
        return val != ot.val;
    }
    bool operator<(const Modular& ot) const {
        return val < ot.val;
    }
    bool operator>(const Modular& ot) const {
        return val > ot.val;
    }
    explicit operator int() const {
        return val;
    }
};

template <int mod>
Modular<mod> any_to_mint(ll a) {
    a %= mod;
    return a < 0 ? a + mod : a;
}

template<int mod>
istream& operator>>(istream& istr, Modular<mod>& x) {
    return istr >> x.val;
}

template<int mod>
ostream& operator<<(ostream& ostr, const Modular<mod>& x) {
    return ostr << x.val;
}

template <int mod = 998244353, int root = 3>
class NTT {
    using Mint = Modular<mod>;
public:
    static vector<int> mult(const vector<int>& a, const vector<int>& b) {
        vector<Mint> amod(a.size());
        vector<Mint> bmod(b.size());
        for (int i = 0; i < a.size(); i++) {
            amod[i] = any_to_mint<mod>(a[i]);
        }
        for (int i = 0; i < b.size(); i++) {
            bmod[i] = any_to_mint<mod>(b[i]);
        }
        vector<Mint> resmod = mult(amod, bmod);
        vector<int> res(resmod.size());
        for (int i = 0; i < res.size(); i++) {
            res[i] = resmod[i].val;
        }
        return res;
    }
    static vector<Mint> mult(const vector<Mint>& a, const vector<Mint>& b) {
        int n = int(a.size()), m = int(b.size());
        if (!n || !m) return {};
        int lg = 0;
        while ((1 << lg) < n + m - 1) lg++;
        int z = 1 << lg;
        auto a2 = a, b2 = b;
        a2.resize(z);
        b2.resize(z);
        nft(false, a2);
        nft(false, b2);
        for (int i = 0; i < z; i++) a2[i] *= b2[i];
        nft(true, a2);
        a2.resize(n + m - 1);
        Mint iz = inv(Mint(z));
        for (int i = 0; i < n + m - 1; i++) a2[i] *= iz;
        return a2;
    }

private:
    static void nft(bool type, vector<Modular<mod>> &a) {
        int n = int(a.size()), s = 0;
        while ((1 << s) < n) s++;
        assert(1 << s == n);
        static vector<Mint> ep, iep;
        while (int(ep.size()) <= s) {
            ep.push_back(binpow(Mint(root), (mod - 1) / (1 << ep.size())));
            iep.push_back(inv(ep.back()));
        }
        vector<Mint> b(n);
        for (int i = 1; i <= s; i++) {
            int w = 1 << (s - i);
            Mint base = type ? iep[i] : ep[i], now = 1;
            for (int y = 0; y < n / 2; y += w) {
                for (int x = 0; x < w; x++) {
                    auto l = a[y << 1 | x];
                    auto r = now * a[y << 1 | x | w];
                    b[y | x] = l + r;
                    b[y | x | n >> 1] = l - r;
                }
                now *= base;
            }
            swap(a, b);
        }
    }
};

const ll inf = 1e18;
const int C = 10;
const int N = 1e5 + 10;

int flag[N];
ll dp[(1 << C)][(1 << C)];

int b[N];
int lef[C][N], rig[C][N];
int pref[C][N], suf[C][N];

bool getbit(int mask, int bit) {
    return mask & (1 << bit);
}

ll mask_to_ll(int mask) {
    ll res = 0;
    for (int i = 1; i < C; i++) {
        if (getbit(mask, i)) {
            res = res * 10 + i;
            mask ^= (1 << i);
            break;
        }
    }
    for (int i = 0; i < C; i++) {
        if (getbit(mask, i)) {
            res = res * 10 + i;
        }
    }
    return res;
}

int vec_to_mask(const vector<int>& vec) {
    int mask = 0;
    for (int i : vec) {
        mask |= (1 << i);
    }
    return mask;
}

void init() {
    flag[0] = (1 << 0);
    for (int i = 1; i <= N - 1; i++) {
        for (int j = i; j >= 1; j /= 10) {
            flag[i] |= (1 << (j % 10));
        }
    }
    for (int i = 0; i < (1 << C); i++) {
        for (int j = 0; j < (1 << C); j++) {
            dp[i][j] = inf;
        }
    }
    for (int mask = 0; mask < (1 << C); mask++) {
        for (int last = 0; last < C && last != 9; last++) {
            if (mask == 0 && last == 0) {
                continue;
            }
            int pref_mask = mask | (1 << last);
            int suf_mask = mask | (1 << (last + 1));
            if (mask_to_ll(mask) != 0 || last != 0) {
                dp[pref_mask][suf_mask] = min(dp[pref_mask][suf_mask], mask_to_ll(mask == 1 ? 3 : mask) * 10 + last);
            }

            pref_mask = mask | (1 << last) | (1 << 9);
            suf_mask = mask | (1 << (last + 1)) | (1 << 0);
            dp[pref_mask][suf_mask] = min(dp[pref_mask][suf_mask], mask_to_ll(mask == 1 ? 3 : mask) * 100 + last * 10 + 9);
        }
    }
    for (int i = (1 << C) - 1; i >= 0; i--) {
        for (int j = (1 << C) - 1; j >= 0; j--) {
            for (int c = 0; c < C; c++) {
                dp[i][j] = min(dp[i][j], dp[i | (1 << c)][j]);
                dp[i][j] = min(dp[i][j], dp[i][j | (1 << c)]);
            }
        }
    }
}

void calc_lef_rig(int k) {
    const int n = 100'000;
    for (int c = 0; c < C; c++) {
        vector<int> p(n, 0);
        vector<int> q(k, 0);
        for (int i = 0; i < n; i++) {
            p[i] = getbit(flag[i], c);
        }
        for (int i = 1; i <= k; i++) {
            q[k - i] = b[i] == c;
        }
        auto r = NTT<998244353, 3>::mult(p, q);
        for (int i = 0; i < n; i++) {
            lef[c][i] = r[i];
            rig[c][i] = r[i + k - 1];
        }
    }
}

void calc_pref_suf(int k) {
    for (int c = 0; c < C; c++) {
        pref[c][0] = 0;
        suf[c][k + 1] = 0;
    }
    for (int i = 1; i <= k; i++) {
        for (int c = 0; c < C; c++) {
            pref[c][i] = pref[c][i - 1];
        }
        pref[b[i]][i]++;
    }
    for (int i = k; i >= 1; i--) {
        for (int c = 0; c < C; c++) {
            suf[c][i] = suf[c][i + 1];
        }
        suf[b[i]][i]++;
    }
}

ll solve(int k) {
    calc_lef_rig(k);
    calc_pref_suf(k);

    const int n = 100'000;
    ll ans = inf;

    for (int i = 0; i < n; i++) {
        if (i + k - 1 < n) {
            int need = 0;
            for (int c = 0; c < C; c++) {
                if (rig[c][i] != pref[c][k]) {
                    need |= (1 << c);
                }
            }
            if (need == 0) {
                if (i == 0) {
                    ans = min(ans, ll(n));
                } else {
                    ans = min(ans, ll(i));
                }
            } else {
                if (need == 1) {
                    need = 3;
                }
                ll x = mask_to_ll(need);
                ans = min(ans, x * n + i);
            }
        } else {
            int len_pref = n - i;
            int len_suf = k - len_pref;
            int need_pref = 0, need_suf = 0;
            for (int c = 0; c < C; c++) {
                if (rig[c][i] != pref[c][len_pref]) {
                    need_pref |= (1 << c);
                }
                if (lef[c][len_suf - 1] != suf[c][len_suf]) {
                    need_suf |= (1 << c);
                }
            }
            if (dp[need_pref][need_suf] != inf) {
                ans = min(ans, dp[need_pref][need_suf] * n + i);
            }
        }
    }
    return ans;
}

ll slow(int k) {
    for (int n = 1; n <= 1000; n++) {
        bool ok = true;
        for (int i = 1; i <= k; i++) {
            ok &= getbit(flag[n + i - 1], b[i]);
        }
        if (ok) {
            return n;
        }
    }
    return -1;
}

void stress() {
    mt19937 rnd;
    while (true) {
        int k = rnd() % 10 + 1;
        for (int i = 1; i <= k; i++) {
            b[i] = rnd() % C;
        }
        ll res = slow(k);
        if (res == -1) {
            continue;
        }
        ll ans = solve(k);
        if (ans == res) {
            cout << "OK" << endl;
        } else {
            cout << "WA\n";
            cout << k << "\n";
            for (int i = 1; i <= k; i++) {
                cout << b[i] << " ";
            }
            cout << "\n\n";
            cout << ans << " " << res << "\n";
            break;
        }
    }
    exit(0);
}

int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
#ifdef LOCAL
    freopen("input.txt", "r", stdin);
#endif

    init();

    // stress();

    // cout << dp[vec_to_mask({1, 2, 3})][vec_to_mask({9, 0, 1, 4})] << "\n";

    int k;
    cin >> k;
    for (int i = 1; i <= k; i++) {
        cin >> b[i];
    }
//    k = 100'000;
//    for (int i = 1; i <= k; i++) {
//        b[i] = 0;
//    }
    cout << solve(k) << "\n";

#ifdef LOCAL
    cout << "\nTime elapsed: " << double(clock()) / CLOCKS_PER_SEC << " s.\n";
#endif
}

Compilation message

sequence.cpp: In instantiation of 'static std::vector<int> NTT<mod, root>::mult(const std::vector<int>&, const std::vector<int>&) [with int mod = 998244353; int root = 3]':
sequence.cpp:274:46:   required from here
sequence.cpp:125:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  125 |         for (int i = 0; i < a.size(); i++) {
      |                         ~~^~~~~~~~~~
sequence.cpp:128:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  128 |         for (int i = 0; i < b.size(); i++) {
      |                         ~~^~~~~~~~~~
sequence.cpp:133:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  133 |         for (int i = 0; i < res.size(); i++) {
      |                         ~~^~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 179 ms 26524 KB Output is correct
2 Correct 173 ms 26028 KB Output is correct
3 Correct 176 ms 26012 KB Output is correct
4 Correct 172 ms 26076 KB Output is correct
5 Correct 174 ms 25964 KB Output is correct
6 Correct 175 ms 26040 KB Output is correct
7 Correct 173 ms 26004 KB Output is correct
8 Correct 180 ms 26312 KB Output is correct
9 Correct 175 ms 26204 KB Output is correct
10 Correct 174 ms 26064 KB Output is correct
11 Correct 173 ms 26220 KB Output is correct
12 Correct 179 ms 26016 KB Output is correct
13 Correct 174 ms 26020 KB Output is correct
14 Correct 173 ms 25992 KB Output is correct
15 Correct 175 ms 26020 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 174 ms 26008 KB Output is correct
2 Correct 175 ms 26024 KB Output is correct
3 Correct 183 ms 26240 KB Output is correct
4 Correct 173 ms 26004 KB Output is correct
5 Correct 173 ms 26048 KB Output is correct
6 Correct 177 ms 25988 KB Output is correct
7 Correct 174 ms 26220 KB Output is correct
8 Correct 174 ms 26080 KB Output is correct
9 Correct 173 ms 26220 KB Output is correct
10 Correct 187 ms 26200 KB Output is correct
11 Correct 175 ms 26060 KB Output is correct
12 Correct 177 ms 26152 KB Output is correct
13 Correct 178 ms 26308 KB Output is correct
14 Correct 173 ms 26088 KB Output is correct
15 Correct 173 ms 26020 KB Output is correct
16 Correct 173 ms 26376 KB Output is correct
17 Correct 174 ms 26080 KB Output is correct
18 Correct 176 ms 26000 KB Output is correct
19 Correct 173 ms 26020 KB Output is correct
20 Correct 173 ms 26116 KB Output is correct
21 Correct 173 ms 26052 KB Output is correct
22 Correct 176 ms 26132 KB Output is correct
23 Correct 177 ms 26208 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 177 ms 26076 KB Output is correct
2 Correct 174 ms 26160 KB Output is correct
3 Correct 180 ms 26512 KB Output is correct
4 Incorrect 175 ms 26156 KB Output isn't correct
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 174 ms 26176 KB Output is correct
2 Correct 180 ms 26192 KB Output is correct
3 Correct 174 ms 26052 KB Output is correct
4 Correct 175 ms 26212 KB Output is correct
5 Correct 326 ms 25640 KB Output is correct
6 Correct 174 ms 26208 KB Output is correct
7 Correct 177 ms 26012 KB Output is correct
8 Correct 174 ms 26056 KB Output is correct
9 Correct 174 ms 25996 KB Output is correct
10 Correct 173 ms 26108 KB Output is correct
11 Correct 332 ms 26124 KB Output is correct
12 Correct 336 ms 25924 KB Output is correct
13 Correct 173 ms 25992 KB Output is correct
14 Correct 182 ms 26324 KB Output is correct
15 Correct 174 ms 26032 KB Output is correct
16 Correct 174 ms 26004 KB Output is correct
17 Correct 174 ms 26032 KB Output is correct
18 Correct 173 ms 26004 KB Output is correct
19 Correct 173 ms 26056 KB Output is correct
20 Correct 175 ms 26044 KB Output is correct
21 Correct 180 ms 25972 KB Output is correct
22 Correct 179 ms 26176 KB Output is correct
23 Correct 175 ms 26064 KB Output is correct
24 Correct 175 ms 26124 KB Output is correct
25 Correct 174 ms 26220 KB Output is correct
26 Correct 175 ms 26236 KB Output is correct
27 Correct 174 ms 26196 KB Output is correct
28 Correct 174 ms 26160 KB Output is correct
29 Incorrect 175 ms 26308 KB Output isn't correct
30 Halted 0 ms 0 KB -