Submission #864973

# Submission time Handle Problem Language Result Execution time Memory
864973 2023-10-23T20:51:45 Z danikoynov New Home (APIO18_new_home) C++14
57 / 100
2108 ms 911216 KB
    #include<bits/stdc++.h>
    #define endl '\n'
        
    using namespace std;
    typedef long long ll;
        
    const int maxn = 3e5 + 10, inf = 1e9;
        
    struct store
    {
        int x, t, a, b;
    }s[maxn];
        
    struct query
    {
        int l, y, idx;
    }task[maxn];
        
    int n, k, q;
    int readInt () {
        bool minus = false;
        int result = 0;
        char ch;
        ch = getchar();
        while (true) {
            if (ch == '-') break;
            if (ch >= '0' && ch <= '9') break;
            ch = getchar();
        }
        if (ch == '-') minus = true; else result = ch-'0';
        while (true) {
            ch = getchar();
            if (ch < '0' || ch > '9') break;
            result = result*10 + (ch - '0');
        }
        if (minus)
            return -result;
        else
            return result;
    }
    void input()
    {
        n = readInt();
        k = readInt();
        q = readInt();
        ///cin >> n >> k >> q;
        for (int i = 1; i <= n; i ++)
        {
            s[i].x = readInt();
            s[i].t = readInt();
            s[i].a = readInt();
            s[i].b = readInt();
            ///        cin >> s[i].x >> s[i].t >> s[i].a >> s[i].b;
        }
        
        for (int i = 1; i <= q; i ++)
        {
                task[i].l = readInt();
                task[i].y = readInt();
                task[i].idx = i;
            ///cin >> task[i].l >> task[i].y, task[i].idx = i;
        }
    }
        
     
        
    bool cmp_query(query &t1, query &t2)
    {
        return t1.l < t2.l;
    }
        
    struct event
    {
        int type, cor, add, arrive;
        
        event(int _type, int _cor, int _add, int _arrive)
        {
            type = _type;
            cor = _cor;
            add = _add;
            arrive = _arrive;
        }
    };
        
    bool cmp_event(event &e1, event &e2)
    {
        if (e1.arrive != e2.arrive)
            return e1.arrive < e2.arrive;
        
        if (e1.add != e2.add)
            return e1.add < e2.add;
        
        return e1.cor < e2.cor; /// could have dublicates
    }
        
     
        
    multiset < int > act[maxn];
    
    struct interval_ray
    {
        int s, e;
        pair < int, int > ray;
        
        interval_ray(int _s, int _e, pair < int, int > _ray)
        {
            s = _s;
            e = _e;
            ray = _ray;
        }
     
        interval_ray(int &_s, int &_e, pair < int, int > &_ray)
        {
            s = _s;
            e = _e;
            ray = _ray;
        }
    };
     
    vector < interval_ray > seg_left, seg_right;
        struct hash_pair {
        template <class T1, class T2>
        long long operator()(const pair<T1, T2>& p) const
        {
            auto hash1 = hash<T1>{}(p.first);
            auto hash2 = hash<T2>{}(p.second);
            return (hash1 << 16) + hash2;             
        }
    };
    
    unordered_map < int, int > cnt[maxn];
    unordered_map < int, int > ray_right[maxn], ray_left[maxn];
    vector < int > dat;
    void make_left_segment(int start, int finish, int timer, int type)
    {
        ///cout << "left " << start << " " << finish << " " << timer << endl;
        seg_left.push_back(interval_ray(ray_left[type][start], timer - 1, {start, finish}));
        ray_left[type][start] = 0;
    }
        
    void make_right_segment(int start, int finish, int timer, int type)
    {
        seg_right.push_back(interval_ray(ray_right[type][start], timer - 1, {start, finish}));
        ray_right[type][start] = 0;
    }
        
    void add_event(int type, int cor, int timer)
    {
        cnt[type][cor] ++;
        if (cnt[type][cor] > 1)
            return;

        multiset < int > :: iterator it = act[type].upper_bound(cor);
        int aft = *it;
        int bef = *prev(it);
        
        if (bef == -inf && aft == inf)
        {
            
            make_right_segment(-inf, inf, timer, type);
            ray_left[type][cor] = timer;
            ray_right[type][cor] = timer;
        }
        else
        if (bef == - inf)
        {
            make_left_segment(aft, -inf, timer, type);
            int mid = (cor + aft) / 2;
            ray_right[type][cor] = timer;
            ray_left[type][aft] = timer;
            ray_left[type][cor] = timer;
        }
        else
        if (aft == inf)
        {
            make_right_segment(bef, inf, timer, type);
            int mid = (bef + cor) / 2;
            ray_left[type][cor] = timer;
            ray_right[type][bef] = timer;
            ray_right[type][cor] = timer;
        }
        else
        {
            int mid = (bef + aft) / 2;
            make_right_segment(bef, mid, timer, type);
            make_left_segment(aft, mid + 1, timer, type);
            assert(ray_right[type][cor] == 0);
            assert(ray_left[type][aft] == 0);
            int mid_left = (bef + cor) / 2;
            ray_right[type][bef] = timer;
            ray_left[type][cor] = timer;
            int mid_right = (cor + aft) / 2;
            ray_right[type][cor] = timer;
            ray_left[type][aft] = timer;
        }
        
        act[type].insert(cor);
    }
        
        
    void remove_event(int type, int cor, int timer)
    {
        cnt[type][cor] --;
        if (cnt[type][cor] > 0)
            return;
        multiset < int > :: iterator it = act[type].find(cor);
        int aft = *next(it);
        int bef = *prev(it);
        
        if (bef == -inf && aft == inf)
        {
            ///cout << "reverse " << timer << endl;
        
            make_left_segment(cor, -inf, timer, type);
            make_right_segment(cor, +inf, timer, type);
            ray_right[type][-inf] = timer;
        
        }
        else
        if (bef == -inf)
        {
        
            ///cout << "step " << timer << endl;
            make_left_segment(cor, -inf, timer, type);
            int mid = (cor + aft) / 2;
            make_right_segment(cor, mid, timer, type);
            make_left_segment(aft, mid + 1, timer, type);
            ray_left[type][aft] = timer;
        
        
        }
        else
        if (aft == inf)
        {
        
            make_right_segment(cor, inf, timer, type);
            int mid = (bef + cor) / 2;
            make_left_segment(cor, mid + 1, timer, type);
            make_right_segment(bef, mid, timer, type);
            ray_right[type][bef] = timer;
        }
        else
        {
            int mid = (bef + aft) / 2;
            ///assert((ray_right[type][{bef, mid}]) == 0);
            ///assert((ray_left[type][{aft, mid + 1}]) == 0);
        
            int mid_left = (bef + cor) / 2;
            make_right_segment(bef, mid_left, timer, type);
            make_left_segment(cor, mid_left + 1, timer, type);
            int mid_right = (aft + cor) / 2;
            make_right_segment(cor, mid_right, timer, type);
            make_left_segment(aft, mid_right + 1, timer, type);
        
                    ray_right[type][bef] = timer;
            ray_left[type][aft] = timer;
        
        }
        
        act[type].erase(it);
    }
        
    int ans[maxn];
        
    vector < interval_ray > tree_left[maxn * 6], tree_right[maxn * 6];
    int pt_lf[6 * maxn], bs_lf[6 * maxn];
    int pt_rf[6 * maxn], bs_rf[6 * maxn];
        
    bool cmp_ray_second(interval_ray r1, interval_ray r2)
    {
        return r1.ray.second < r2.ray.second;
    }
    void update_range(int root, int left, int right, int qleft, int qright, interval_ray &ray, int type)
    {
        if (left > qright || right < qleft)
            return;
        
        if (left >= qleft && right <= qright)
        {
            if (type == -1)
                tree_left[root].push_back(ray);
            else
                tree_right[root].push_back(ray);
            return;
        }
        
        int mid = (left + right) / 2;
        update_range(root * 2, left, mid, qleft, qright, ray, type);
        update_range(root * 2 + 1, mid + 1, right, qleft, qright, ray, type);
        
    }
        
    unordered_map < int, int > event_times;
        
    void answer_queries()
    {
        sort(task + 1, task + q + 1, cmp_query);
        
        vector < event > events;
        for (int i = 1; i <= n; i ++)
        {
            events.push_back(event(s[i].t, s[i].x, 1, s[i].a));
            events.push_back(event(s[i].t, s[i].x, -1, s[i].b + 1));
        }
        
        sort(events.begin(), events.end(), cmp_event);
        
        for (int i = 1; i <= k; i ++)
        {
            act[i].insert(-inf);
            act[i].insert(inf);
            ray_right[i][-inf] = 1;
        }
        
        
        int cnt = 0;
        dat.push_back(1);
        dat.push_back(0);
        
        for (event cur : events)
        {
            ///dat.push_back(cur.arrive - 1);
            dat.push_back(cur.arrive);
            ///cout << "event " << cur.arrive << " " << cur.add << " " << cur.cor << " " << cur.type << endl;
            if (cur.add == 1)
                add_event(cur.type, cur.cor, cur.arrive);
            else
                remove_event(cur.type, cur.cor, cur.arrive);
        }
        
        dat.push_back(inf - 1);
        dat.push_back(inf);
        
        for (int i = 1; i <= q; i ++)
            dat.push_back(task[i].y);
        
        sort(dat.begin(), dat.end());
        cnt ++;
        event_times[dat[0]] = cnt;
        for (int i = 1; i < dat.size(); i ++)
        {
            if (dat[i] == dat[i - 1])
                continue;
            cnt ++;
            event_times[dat[i]] = cnt;
        }
        
        
        for (int i = 1; i <= k; i ++)
            for (auto it : ray_right[i])
            {
                ///cout << it -> first.first << " :: " << it -> first.second << " " << it -> second << endl;
                if (it.second != 0)
                    make_right_segment(it.first, inf, inf, i);
            }
        
        
        sort(seg_right.begin(), seg_right.end(), cmp_ray_second);
        sort(seg_left.begin(), seg_left.end(), cmp_ray_second);
        for (interval_ray cur : seg_left)
        {
            //assert(event_times[cur.e + 1] != 0);
            update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, -1);
        ///    cout << "left ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
        }
        
        for (interval_ray cur : seg_right)
        {
            //assert(event_times[cur.e + 1] != 0);
            update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, 1);
            ///cout << "right ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
        }
        
        
        for (int i = 1; i <= 4 * cnt; i ++)
        {
            pt_rf[i] = (int)(tree_right[i].size()) - 1;
            bs_rf[i] = inf;
        
            pt_lf[i] = 0;
            bs_lf[i] = -inf;
            ///sort(tree_right[i].begin(), tree_right[i].end(), cmp_ray_second);
            ///sort(tree_left[i].begin(), tree_left[i].end(), cmp_ray_second);
        }
        
        for (int i = q; i > 0; i --)
        {
            int longest = 0;
            int pos = event_times[task[i].y];
            int root = 1, left = 1, right = cnt;
        
            while(true)
            {
        
                while(pt_rf[root] >= 0 && task[i].l <= tree_right[root][pt_rf[root]].ray.second)
                {
                    bs_rf[root] = min(bs_rf[root], tree_right[root][pt_rf[root]].ray.first);
                    pt_rf[root] --;
                }
                longest = max(longest, task[i].l - bs_rf[root]);
        
        
                if (left == right)
                    break;
        
                int mid = (left + right) / 2;
                if (pos <= mid)
                {
                    root *= 2;
                    right = mid;
                }
                else
                {
                    root = root * 2 + 1;
                    left = mid + 1;
                }
            }
        
            ans[task[i].idx] = max(ans[task[i].idx], longest);
        }
        
        for (int i = 1; i <= q; i ++)
        {
            int longest = 0;
            int pos = event_times[task[i].y];
            int root = 1, left = 1, right = cnt;
            while(true)
            {
                ///cout << "step " << root << " " << left << " " << right << endl;
                while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
                {
                    bs_lf[root] = max(bs_lf[root], tree_left[root][pt_lf[root]].ray.first);
                    pt_lf[root] ++;
                }
                longest = max(longest, bs_lf[root] - task[i].l);
                /**for (interval_ray cur : tree_left[root])
                {
                    if (task[i].l >= cur.ray.second)
                        longest = max(longest, cur.ray.first - task[i].l);
                }*/
        
        
                if (left == right)
                    break;
        
                int mid = (left + right) / 2;
                if (pos <= mid)
                {
                    root *= 2;
                    right = mid;
                }
                else
                {
                    root = root * 2 + 1;
                    left = mid + 1;
                }
            }
        
            ans[task[i].idx] = max(ans[task[i].idx], longest);
        }
        
        for (int i = 1; i <= q; i ++)
        {
            if (ans[i] > 2e8)
                cout << -1 << endl;
            else
                cout << ans[i] << endl;
        }
    }
    void solve()
    {
        input();
        ///compress_data();
        answer_queries();
    }
        
    void speed()
    {
        ios_base::sync_with_stdio(false);
        cin.tie(NULL);
        cout.tie(NULL);
    }
    int main()
    {
        
        speed();
        solve();
        return 0;
    }
        
    /**
    2 1 2
    3 1 1 3
    5 1 3 4
    3 3
    3 4
        
        
        
        
    4 2 4
    3 1 1 10
    9 2 2 4
    7 2 5 7
    4 1 8 10
    5 3
    5 6
    5 9
    1 10
        
    2 1 3
    1 1 1 4
    1 1 2 6
    1 3
    1 5
    1 7
        
    1 1 1
    100000000 1 1 1
    1 1
        
        
        
    */

Compilation message

new_home.cpp: In function 'void add_event(int, int, int)':
new_home.cpp:168:17: warning: unused variable 'mid' [-Wunused-variable]
  168 |             int mid = (cor + aft) / 2;
      |                 ^~~
new_home.cpp:177:17: warning: unused variable 'mid' [-Wunused-variable]
  177 |             int mid = (bef + cor) / 2;
      |                 ^~~
new_home.cpp:189:17: warning: unused variable 'mid_left' [-Wunused-variable]
  189 |             int mid_left = (bef + cor) / 2;
      |                 ^~~~~~~~
new_home.cpp:192:17: warning: unused variable 'mid_right' [-Wunused-variable]
  192 |             int mid_right = (cor + aft) / 2;
      |                 ^~~~~~~~~
new_home.cpp: In function 'void remove_event(int, int, int)':
new_home.cpp:244:17: warning: unused variable 'mid' [-Wunused-variable]
  244 |             int mid = (bef + aft) / 2;
      |                 ^~~
new_home.cpp: In function 'void answer_queries()':
new_home.cpp:340:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  340 |         for (int i = 1; i < dat.size(); i ++)
      |                         ~~^~~~~~~~~~~~
new_home.cpp:430:35: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<interval_ray>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  430 |                 while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
      |                       ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 33 ms 160344 KB Output is correct
2 Correct 32 ms 160704 KB Output is correct
3 Correct 33 ms 160508 KB Output is correct
4 Correct 33 ms 160336 KB Output is correct
5 Correct 33 ms 160604 KB Output is correct
6 Correct 36 ms 160860 KB Output is correct
7 Correct 34 ms 161112 KB Output is correct
8 Correct 35 ms 160860 KB Output is correct
9 Correct 35 ms 161112 KB Output is correct
10 Correct 35 ms 160860 KB Output is correct
11 Correct 34 ms 160852 KB Output is correct
12 Correct 34 ms 160860 KB Output is correct
13 Correct 34 ms 160600 KB Output is correct
14 Correct 35 ms 160600 KB Output is correct
15 Correct 34 ms 160860 KB Output is correct
16 Correct 35 ms 160848 KB Output is correct
17 Correct 34 ms 160972 KB Output is correct
18 Correct 35 ms 160856 KB Output is correct
19 Correct 34 ms 160848 KB Output is correct
20 Correct 34 ms 161064 KB Output is correct
21 Correct 34 ms 160856 KB Output is correct
22 Correct 37 ms 161232 KB Output is correct
23 Correct 34 ms 161116 KB Output is correct
24 Correct 35 ms 160848 KB Output is correct
25 Correct 34 ms 160848 KB Output is correct
26 Correct 35 ms 160848 KB Output is correct
27 Correct 34 ms 160592 KB Output is correct
28 Correct 37 ms 160788 KB Output is correct
29 Correct 34 ms 160600 KB Output is correct
30 Correct 35 ms 160604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 33 ms 160344 KB Output is correct
2 Correct 32 ms 160704 KB Output is correct
3 Correct 33 ms 160508 KB Output is correct
4 Correct 33 ms 160336 KB Output is correct
5 Correct 33 ms 160604 KB Output is correct
6 Correct 36 ms 160860 KB Output is correct
7 Correct 34 ms 161112 KB Output is correct
8 Correct 35 ms 160860 KB Output is correct
9 Correct 35 ms 161112 KB Output is correct
10 Correct 35 ms 160860 KB Output is correct
11 Correct 34 ms 160852 KB Output is correct
12 Correct 34 ms 160860 KB Output is correct
13 Correct 34 ms 160600 KB Output is correct
14 Correct 35 ms 160600 KB Output is correct
15 Correct 34 ms 160860 KB Output is correct
16 Correct 35 ms 160848 KB Output is correct
17 Correct 34 ms 160972 KB Output is correct
18 Correct 35 ms 160856 KB Output is correct
19 Correct 34 ms 160848 KB Output is correct
20 Correct 34 ms 161064 KB Output is correct
21 Correct 34 ms 160856 KB Output is correct
22 Correct 37 ms 161232 KB Output is correct
23 Correct 34 ms 161116 KB Output is correct
24 Correct 35 ms 160848 KB Output is correct
25 Correct 34 ms 160848 KB Output is correct
26 Correct 35 ms 160848 KB Output is correct
27 Correct 34 ms 160592 KB Output is correct
28 Correct 37 ms 160788 KB Output is correct
29 Correct 34 ms 160600 KB Output is correct
30 Correct 35 ms 160604 KB Output is correct
31 Correct 933 ms 298108 KB Output is correct
32 Correct 63 ms 164244 KB Output is correct
33 Correct 787 ms 300892 KB Output is correct
34 Correct 815 ms 297752 KB Output is correct
35 Correct 847 ms 297656 KB Output is correct
36 Correct 866 ms 299552 KB Output is correct
37 Correct 620 ms 285368 KB Output is correct
38 Correct 597 ms 286140 KB Output is correct
39 Correct 551 ms 260544 KB Output is correct
40 Correct 544 ms 264068 KB Output is correct
41 Correct 622 ms 250492 KB Output is correct
42 Correct 599 ms 253156 KB Output is correct
43 Correct 58 ms 164812 KB Output is correct
44 Correct 606 ms 248856 KB Output is correct
45 Correct 580 ms 239992 KB Output is correct
46 Correct 477 ms 222848 KB Output is correct
47 Correct 346 ms 220284 KB Output is correct
48 Correct 328 ms 216372 KB Output is correct
49 Correct 394 ms 228724 KB Output is correct
50 Correct 479 ms 246152 KB Output is correct
51 Correct 376 ms 223620 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1884 ms 778204 KB Output is correct
2 Correct 1874 ms 758444 KB Output is correct
3 Correct 2108 ms 911216 KB Output is correct
4 Correct 2041 ms 817396 KB Output is correct
5 Correct 1810 ms 815484 KB Output is correct
6 Correct 1838 ms 784816 KB Output is correct
7 Correct 2087 ms 886796 KB Output is correct
8 Correct 1996 ms 856752 KB Output is correct
9 Correct 2048 ms 766968 KB Output is correct
10 Correct 1996 ms 800160 KB Output is correct
11 Correct 1682 ms 765888 KB Output is correct
12 Correct 1883 ms 757048 KB Output is correct
# Verdict Execution time Memory Grader output
1 Runtime error 1620 ms 564656 KB Execution killed with signal 11
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 33 ms 160344 KB Output is correct
2 Correct 32 ms 160704 KB Output is correct
3 Correct 33 ms 160508 KB Output is correct
4 Correct 33 ms 160336 KB Output is correct
5 Correct 33 ms 160604 KB Output is correct
6 Correct 36 ms 160860 KB Output is correct
7 Correct 34 ms 161112 KB Output is correct
8 Correct 35 ms 160860 KB Output is correct
9 Correct 35 ms 161112 KB Output is correct
10 Correct 35 ms 160860 KB Output is correct
11 Correct 34 ms 160852 KB Output is correct
12 Correct 34 ms 160860 KB Output is correct
13 Correct 34 ms 160600 KB Output is correct
14 Correct 35 ms 160600 KB Output is correct
15 Correct 34 ms 160860 KB Output is correct
16 Correct 35 ms 160848 KB Output is correct
17 Correct 34 ms 160972 KB Output is correct
18 Correct 35 ms 160856 KB Output is correct
19 Correct 34 ms 160848 KB Output is correct
20 Correct 34 ms 161064 KB Output is correct
21 Correct 34 ms 160856 KB Output is correct
22 Correct 37 ms 161232 KB Output is correct
23 Correct 34 ms 161116 KB Output is correct
24 Correct 35 ms 160848 KB Output is correct
25 Correct 34 ms 160848 KB Output is correct
26 Correct 35 ms 160848 KB Output is correct
27 Correct 34 ms 160592 KB Output is correct
28 Correct 37 ms 160788 KB Output is correct
29 Correct 34 ms 160600 KB Output is correct
30 Correct 35 ms 160604 KB Output is correct
31 Correct 933 ms 298108 KB Output is correct
32 Correct 63 ms 164244 KB Output is correct
33 Correct 787 ms 300892 KB Output is correct
34 Correct 815 ms 297752 KB Output is correct
35 Correct 847 ms 297656 KB Output is correct
36 Correct 866 ms 299552 KB Output is correct
37 Correct 620 ms 285368 KB Output is correct
38 Correct 597 ms 286140 KB Output is correct
39 Correct 551 ms 260544 KB Output is correct
40 Correct 544 ms 264068 KB Output is correct
41 Correct 622 ms 250492 KB Output is correct
42 Correct 599 ms 253156 KB Output is correct
43 Correct 58 ms 164812 KB Output is correct
44 Correct 606 ms 248856 KB Output is correct
45 Correct 580 ms 239992 KB Output is correct
46 Correct 477 ms 222848 KB Output is correct
47 Correct 346 ms 220284 KB Output is correct
48 Correct 328 ms 216372 KB Output is correct
49 Correct 394 ms 228724 KB Output is correct
50 Correct 479 ms 246152 KB Output is correct
51 Correct 376 ms 223620 KB Output is correct
52 Correct 667 ms 308660 KB Output is correct
53 Correct 665 ms 311160 KB Output is correct
54 Correct 746 ms 294272 KB Output is correct
55 Correct 597 ms 273188 KB Output is correct
56 Correct 580 ms 283108 KB Output is correct
57 Correct 588 ms 257120 KB Output is correct
58 Correct 601 ms 276760 KB Output is correct
59 Correct 625 ms 286808 KB Output is correct
60 Correct 614 ms 261404 KB Output is correct
61 Correct 221 ms 210376 KB Output is correct
62 Correct 658 ms 318860 KB Output is correct
63 Correct 694 ms 292984 KB Output is correct
64 Correct 693 ms 289024 KB Output is correct
65 Correct 669 ms 278640 KB Output is correct
66 Correct 628 ms 258740 KB Output is correct
67 Correct 158 ms 188612 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 33 ms 160344 KB Output is correct
2 Correct 32 ms 160704 KB Output is correct
3 Correct 33 ms 160508 KB Output is correct
4 Correct 33 ms 160336 KB Output is correct
5 Correct 33 ms 160604 KB Output is correct
6 Correct 36 ms 160860 KB Output is correct
7 Correct 34 ms 161112 KB Output is correct
8 Correct 35 ms 160860 KB Output is correct
9 Correct 35 ms 161112 KB Output is correct
10 Correct 35 ms 160860 KB Output is correct
11 Correct 34 ms 160852 KB Output is correct
12 Correct 34 ms 160860 KB Output is correct
13 Correct 34 ms 160600 KB Output is correct
14 Correct 35 ms 160600 KB Output is correct
15 Correct 34 ms 160860 KB Output is correct
16 Correct 35 ms 160848 KB Output is correct
17 Correct 34 ms 160972 KB Output is correct
18 Correct 35 ms 160856 KB Output is correct
19 Correct 34 ms 160848 KB Output is correct
20 Correct 34 ms 161064 KB Output is correct
21 Correct 34 ms 160856 KB Output is correct
22 Correct 37 ms 161232 KB Output is correct
23 Correct 34 ms 161116 KB Output is correct
24 Correct 35 ms 160848 KB Output is correct
25 Correct 34 ms 160848 KB Output is correct
26 Correct 35 ms 160848 KB Output is correct
27 Correct 34 ms 160592 KB Output is correct
28 Correct 37 ms 160788 KB Output is correct
29 Correct 34 ms 160600 KB Output is correct
30 Correct 35 ms 160604 KB Output is correct
31 Correct 933 ms 298108 KB Output is correct
32 Correct 63 ms 164244 KB Output is correct
33 Correct 787 ms 300892 KB Output is correct
34 Correct 815 ms 297752 KB Output is correct
35 Correct 847 ms 297656 KB Output is correct
36 Correct 866 ms 299552 KB Output is correct
37 Correct 620 ms 285368 KB Output is correct
38 Correct 597 ms 286140 KB Output is correct
39 Correct 551 ms 260544 KB Output is correct
40 Correct 544 ms 264068 KB Output is correct
41 Correct 622 ms 250492 KB Output is correct
42 Correct 599 ms 253156 KB Output is correct
43 Correct 58 ms 164812 KB Output is correct
44 Correct 606 ms 248856 KB Output is correct
45 Correct 580 ms 239992 KB Output is correct
46 Correct 477 ms 222848 KB Output is correct
47 Correct 346 ms 220284 KB Output is correct
48 Correct 328 ms 216372 KB Output is correct
49 Correct 394 ms 228724 KB Output is correct
50 Correct 479 ms 246152 KB Output is correct
51 Correct 376 ms 223620 KB Output is correct
52 Correct 1884 ms 778204 KB Output is correct
53 Correct 1874 ms 758444 KB Output is correct
54 Correct 2108 ms 911216 KB Output is correct
55 Correct 2041 ms 817396 KB Output is correct
56 Correct 1810 ms 815484 KB Output is correct
57 Correct 1838 ms 784816 KB Output is correct
58 Correct 2087 ms 886796 KB Output is correct
59 Correct 1996 ms 856752 KB Output is correct
60 Correct 2048 ms 766968 KB Output is correct
61 Correct 1996 ms 800160 KB Output is correct
62 Correct 1682 ms 765888 KB Output is correct
63 Correct 1883 ms 757048 KB Output is correct
64 Runtime error 1620 ms 564656 KB Execution killed with signal 11
65 Halted 0 ms 0 KB -