Submission #864968

# Submission time Handle Problem Language Result Execution time Memory
864968 2023-10-23T20:42:40 Z danikoynov New Home (APIO18_new_home) C++14
47 / 100
4633 ms 1048576 KB
    #include<bits/stdc++.h>
    #define endl '\n'
        
    using namespace std;
    typedef long long ll;
        
    const int maxn = 7e5 + 10, inf = 1e9;
        
    struct store
    {
        int x, t, a, b;
    }s[maxn];
        
    struct query
    {
        int l, y, idx;
    }task[maxn];
        
    int n, k, q;
    int readInt () {
        bool minus = false;
        int result = 0;
        char ch;
        ch = getchar();
        while (true) {
            if (ch == '-') break;
            if (ch >= '0' && ch <= '9') break;
            ch = getchar();
        }
        if (ch == '-') minus = true; else result = ch-'0';
        while (true) {
            ch = getchar();
            if (ch < '0' || ch > '9') break;
            result = result*10 + (ch - '0');
        }
        if (minus)
            return -result;
        else
            return result;
    }
    void input()
    {
        n = readInt();
        k = readInt();
        q = readInt();
        ///cin >> n >> k >> q;
        for (int i = 1; i <= n; i ++)
        {
            s[i].x = readInt();
            s[i].t = readInt();
            s[i].a = readInt();
            s[i].b = readInt();
            ///        cin >> s[i].x >> s[i].t >> s[i].a >> s[i].b;
        }
        
        for (int i = 1; i <= q; i ++)
        {
                task[i].l = readInt();
                task[i].y = readInt();
                task[i].idx = i;
            ///cin >> task[i].l >> task[i].y, task[i].idx = i;
        }
    }
        
    unordered_map < int, int > rev;
    int dif, back_to[2 * maxn];
        
     
     
        
    bool cmp_query(query &t1, query &t2)
    {
        return t1.l < t2.l;
    }
        
    struct event
    {
        int type, cor, add, arrive;
        
        event(int _type, int _cor, int _add, int _arrive)
        {
            type = _type;
            cor = _cor;
            add = _add;
            arrive = _arrive;
        }
    };
        
    bool cmp_event(event &e1, event &e2)
    {
        if (e1.arrive != e2.arrive)
            return e1.arrive < e2.arrive;
        
        if (e1.add != e2.add)
            return e1.add < e2.add;
        
        return e1.cor < e2.cor; /// could have dublicates
    }
        
     
        
    multiset < int > act[maxn];
    
    struct interval_ray
    {
        int s, e;
        pair < int, int > ray;
        
        interval_ray(int _s, int _e, pair < int, int > _ray)
        {
            s = _s;
            e = _e;
            ray = _ray;
        }
     
        interval_ray(int &_s, int &_e, pair < int, int > &_ray)
        {
            s = _s;
            e = _e;
            ray = _ray;
        }
    };
     
    vector < interval_ray > seg_left, seg_right;
        struct hash_pair {
        template <class T1, class T2>
        long long operator()(const pair<T1, T2>& p) const
        {
            auto hash1 = hash<T1>{}(p.first);
            auto hash2 = hash<T2>{}(p.second);
            return (hash1 << 16) + hash2;             
        }
    };
    
    unordered_map < int, int > cnt[maxn];
    unordered_map < int, int > ray_right[maxn], ray_left[maxn];
    vector < int > dat;
    void make_left_segment(int start, int finish, int timer, int type)
    {
        ///cout << "left " << start << " " << finish << " " << timer << endl;
        seg_left.push_back(interval_ray(ray_left[type][start], timer - 1, {start, finish}));
        ray_left[type][start] = 0;
    }
        
    void make_right_segment(int start, int finish, int timer, int type)
    {
        seg_right.push_back(interval_ray(ray_right[type][start], timer - 1, {start, finish}));
        ray_right[type][start] = 0;
    }
        
    void add_event(int type, int cor, int timer)
    {
        cnt[type][cor] ++;
        if (cnt[type][cor] > 1)
            return;

        multiset < int > :: iterator it = act[type].upper_bound(cor);
        int aft = *it;
        int bef = *prev(it);
        
        if (bef == -inf && aft == inf)
        {
            
            make_right_segment(-inf, inf, timer, type);
            ray_left[type][cor] = timer;
            ray_right[type][cor] = timer;
        }
        else
        if (bef == - inf)
        {
            make_left_segment(aft, -inf, timer, type);
            int mid = (cor + aft) / 2;
            ray_right[type][cor] = timer;
            ray_left[type][aft] = timer;
            ray_left[type][cor] = timer;
        }
        else
        if (aft == inf)
        {
            make_right_segment(bef, inf, timer, type);
            int mid = (bef + cor) / 2;
            ray_left[type][cor] = timer;
            ray_right[type][bef] = timer;
            ray_right[type][cor] = timer;
        }
        else
        {
            int mid = (bef + aft) / 2;
            make_right_segment(bef, mid, timer, type);
            make_left_segment(aft, mid + 1, timer, type);
            int mid_left = (bef + cor) / 2;
            ray_right[type][bef] = timer;
            ray_left[type][cor] = timer;
            int mid_right = (cor + aft) / 2;
            ray_right[type][cor] = timer;
            ray_left[type][aft] = timer;
        }
        
        act[type].insert(cor);
    }
        
        
    void remove_event(int type, int cor, int timer)
    {
        cnt[type][cor] --;
        if (cnt[type][cor] > 0)
            return;
        multiset < int > :: iterator it = act[type].find(cor);
        int aft = *next(it);
        int bef = *prev(it);
        
        if (bef == -inf && aft == inf)
        {
            ///cout << "reverse " << timer << endl;
        
            make_left_segment(cor, -inf, timer, type);
            make_right_segment(cor, +inf, timer, type);
            ray_right[type][-inf] = timer;
        
        }
        else
        if (bef == -inf)
        {
        
            ///cout << "step " << timer << endl;
            make_left_segment(cor, -inf, timer, type);
            int mid = (cor + aft) / 2;
            make_right_segment(cor, mid, timer, type);
            make_left_segment(aft, mid + 1, timer, type);
            ray_left[type][aft] = timer;
        
        
        }
        else
        if (aft == inf)
        {
        
            make_right_segment(cor, inf, timer, type);
            int mid = (bef + cor) / 2;
            make_left_segment(cor, mid + 1, timer, type);
            make_right_segment(bef, mid, timer, type);
            ray_right[type][bef] = timer;
        }
        else
        {
            int mid = (bef + aft) / 2;
            ///assert((ray_right[type][{bef, mid}]) == 0);
            ///assert((ray_left[type][{aft, mid + 1}]) == 0);
        
            int mid_left = (bef + cor) / 2;
            make_right_segment(bef, mid_left, timer, type);
            make_left_segment(cor, mid_left + 1, timer, type);
            int mid_right = (aft + cor) / 2;
            make_right_segment(cor, mid_right, timer, type);
            make_left_segment(aft, mid_right + 1, timer, type);
        
                    ray_right[type][bef] = timer;
            ray_left[type][aft] = timer;
        
        }
        
        act[type].erase(it);
    }
        
    int ans[maxn];
        
    vector < interval_ray > tree_left[maxn * 4], tree_right[maxn * 4];
    int pt_lf[4 * maxn], bs_lf[4 * maxn];
    int pt_rf[4 * maxn], bs_rf[4 * maxn];
        
    bool cmp_ray_second(interval_ray r1, interval_ray r2)
    {
        return r1.ray.second < r2.ray.second;
    }
    void update_range(int root, int left, int right, int qleft, int qright, interval_ray &ray, int type)
    {
        if (left > qright || right < qleft)
            return;
        
        if (left >= qleft && right <= qright)
        {
            if (type == -1)
                tree_left[root].push_back(ray);
            else
                tree_right[root].push_back(ray);
            return;
        }
        
        int mid = (left + right) / 2;
        update_range(root * 2, left, mid, qleft, qright, ray, type);
        update_range(root * 2 + 1, mid + 1, right, qleft, qright, ray, type);
        
    }
        
    unordered_map < int, int > event_times;
        
    void answer_queries()
    {
        sort(task + 1, task + q + 1, cmp_query);
        
        vector < event > events;
        for (int i = 1; i <= n; i ++)
        {
            events.push_back(event(s[i].t, s[i].x, 1, s[i].a));
            events.push_back(event(s[i].t, s[i].x, -1, s[i].b + 1));
        }
        
        sort(events.begin(), events.end(), cmp_event);
        
        for (int i = 1; i <= k; i ++)
        {
            act[i].insert(-inf);
            act[i].insert(inf);
            ray_right[i][-inf] = 1;
        }
        
        
        int cnt = 0;
        dat.push_back(1);
        dat.push_back(0);
        
        for (event cur : events)
        {
            ///dat.push_back(cur.arrive - 1);
            dat.push_back(cur.arrive);
            ///cout << "event " << cur.arrive << " " << cur.add << " " << cur.cor << " " << cur.type << endl;
            if (cur.add == 1)
                add_event(cur.type, cur.cor, cur.arrive);
            else
                remove_event(cur.type, cur.cor, cur.arrive);
        }
        
        dat.push_back(inf - 1);
        dat.push_back(inf);
        
        for (int i = 1; i <= q; i ++)
            dat.push_back(task[i].y);
        
        sort(dat.begin(), dat.end());
        cnt ++;
        event_times[dat[0]] = cnt;
        for (int i = 1; i < dat.size(); i ++)
        {
            if (dat[i] == dat[i - 1])
                continue;
            cnt ++;
            event_times[dat[i]] = cnt;
        }
        
        
        for (int i = 1; i <= k; i ++)
            for (auto it : ray_right[i])
            {
                ///cout << it -> first.first << " :: " << it -> first.second << " " << it -> second << endl;
                if (it.second != 0)
                    make_right_segment(it.first, inf, inf, i);
            }
        
        
        sort(seg_right.begin(), seg_right.end(), cmp_ray_second);
        sort(seg_left.begin(), seg_left.end(), cmp_ray_second);
        for (interval_ray cur : seg_left)
        {
            //assert(event_times[cur.e + 1] != 0);
            update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, -1);
        ///    cout << "left ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
        }
        
        for (interval_ray cur : seg_right)
        {
            //assert(event_times[cur.e + 1] != 0);
            update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, 1);
            ///cout << "right ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
        }
        
        
        for (int i = 1; i <= 4 * cnt; i ++)
        {
            pt_rf[i] = (int)(tree_right[i].size()) - 1;
            bs_rf[i] = inf;
        
            pt_lf[i] = 0;
            bs_lf[i] = -inf;
            ///sort(tree_right[i].begin(), tree_right[i].end(), cmp_ray_second);
            ///sort(tree_left[i].begin(), tree_left[i].end(), cmp_ray_second);
        }
        
        for (int i = q; i > 0; i --)
        {
            int longest = 0;
            int pos = event_times[task[i].y];
            int root = 1, left = 1, right = cnt;
        
            while(true)
            {
        
                while(pt_rf[root] >= 0 && task[i].l <= tree_right[root][pt_rf[root]].ray.second)
                {
                    bs_rf[root] = min(bs_rf[root], tree_right[root][pt_rf[root]].ray.first);
                    pt_rf[root] --;
                }
                longest = max(longest, task[i].l - bs_rf[root]);
        
        
                if (left == right)
                    break;
        
                int mid = (left + right) / 2;
                if (pos <= mid)
                {
                    root *= 2;
                    right = mid;
                }
                else
                {
                    root = root * 2 + 1;
                    left = mid + 1;
                }
            }
        
            ans[task[i].idx] = max(ans[task[i].idx], longest);
        }
        
        for (int i = 1; i <= q; i ++)
        {
            int longest = 0;
            int pos = event_times[task[i].y];
            int root = 1, left = 1, right = cnt;
            while(true)
            {
                ///cout << "step " << root << " " << left << " " << right << endl;
                while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
                {
                    bs_lf[root] = max(bs_lf[root], tree_left[root][pt_lf[root]].ray.first);
                    pt_lf[root] ++;
                }
                longest = max(longest, bs_lf[root] - task[i].l);
                /**for (interval_ray cur : tree_left[root])
                {
                    if (task[i].l >= cur.ray.second)
                        longest = max(longest, cur.ray.first - task[i].l);
                }*/
        
        
                if (left == right)
                    break;
        
                int mid = (left + right) / 2;
                if (pos <= mid)
                {
                    root *= 2;
                    right = mid;
                }
                else
                {
                    root = root * 2 + 1;
                    left = mid + 1;
                }
            }
        
            ans[task[i].idx] = max(ans[task[i].idx], longest);
        }
        
        for (int i = 1; i <= q; i ++)
        {
            if (ans[i] > 2e8)
                cout << -1 << endl;
            else
                cout << ans[i] << endl;
        }
    }
    void solve()
    {
        input();
        ///compress_data();
        answer_queries();
    }
        
    void speed()
    {
        ios_base::sync_with_stdio(false);
        cin.tie(NULL);
        cout.tie(NULL);
    }
    int main()
    {
        
        speed();
        solve();
        return 0;
    }
        
    /**
    2 1 2
    3 1 1 3
    5 1 3 4
    3 3
    3 4
        
        
        
        
    4 2 4
    3 1 1 10
    9 2 2 4
    7 2 5 7
    4 1 8 10
    5 3
    5 6
    5 9
    1 10
        
    2 1 3
    1 1 1 4
    1 1 2 6
    1 3
    1 5
    1 7
        
    1 1 1
    100000000 1 1 1
    1 1
        
        
        
    */

Compilation message

new_home.cpp: In function 'void add_event(int, int, int)':
new_home.cpp:172:17: warning: unused variable 'mid' [-Wunused-variable]
  172 |             int mid = (cor + aft) / 2;
      |                 ^~~
new_home.cpp:181:17: warning: unused variable 'mid' [-Wunused-variable]
  181 |             int mid = (bef + cor) / 2;
      |                 ^~~
new_home.cpp:191:17: warning: unused variable 'mid_left' [-Wunused-variable]
  191 |             int mid_left = (bef + cor) / 2;
      |                 ^~~~~~~~
new_home.cpp:194:17: warning: unused variable 'mid_right' [-Wunused-variable]
  194 |             int mid_right = (cor + aft) / 2;
      |                 ^~~~~~~~~
new_home.cpp: In function 'void remove_event(int, int, int)':
new_home.cpp:246:17: warning: unused variable 'mid' [-Wunused-variable]
  246 |             int mid = (bef + aft) / 2;
      |                 ^~~
new_home.cpp: In function 'void answer_queries()':
new_home.cpp:342:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  342 |         for (int i = 1; i < dat.size(); i ++)
      |                         ~~^~~~~~~~~~~~
new_home.cpp:432:35: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<interval_ray>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  432 |                 while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
      |                       ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 60 ms 293712 KB Output is correct
2 Correct 60 ms 293712 KB Output is correct
3 Correct 60 ms 293712 KB Output is correct
4 Correct 60 ms 293724 KB Output is correct
5 Correct 60 ms 293964 KB Output is correct
6 Correct 63 ms 294228 KB Output is correct
7 Correct 63 ms 294456 KB Output is correct
8 Correct 63 ms 294484 KB Output is correct
9 Correct 62 ms 294600 KB Output is correct
10 Correct 64 ms 294456 KB Output is correct
11 Correct 61 ms 294224 KB Output is correct
12 Correct 63 ms 294252 KB Output is correct
13 Correct 62 ms 293984 KB Output is correct
14 Correct 62 ms 294172 KB Output is correct
15 Correct 62 ms 294364 KB Output is correct
16 Correct 63 ms 294352 KB Output is correct
17 Correct 67 ms 294224 KB Output is correct
18 Correct 68 ms 294212 KB Output is correct
19 Correct 64 ms 294224 KB Output is correct
20 Correct 64 ms 294224 KB Output is correct
21 Correct 61 ms 294224 KB Output is correct
22 Correct 62 ms 294600 KB Output is correct
23 Correct 63 ms 294484 KB Output is correct
24 Correct 63 ms 294224 KB Output is correct
25 Correct 62 ms 294252 KB Output is correct
26 Correct 64 ms 294228 KB Output is correct
27 Correct 62 ms 293976 KB Output is correct
28 Correct 64 ms 294072 KB Output is correct
29 Correct 61 ms 293968 KB Output is correct
30 Correct 61 ms 293968 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 60 ms 293712 KB Output is correct
2 Correct 60 ms 293712 KB Output is correct
3 Correct 60 ms 293712 KB Output is correct
4 Correct 60 ms 293724 KB Output is correct
5 Correct 60 ms 293964 KB Output is correct
6 Correct 63 ms 294228 KB Output is correct
7 Correct 63 ms 294456 KB Output is correct
8 Correct 63 ms 294484 KB Output is correct
9 Correct 62 ms 294600 KB Output is correct
10 Correct 64 ms 294456 KB Output is correct
11 Correct 61 ms 294224 KB Output is correct
12 Correct 63 ms 294252 KB Output is correct
13 Correct 62 ms 293984 KB Output is correct
14 Correct 62 ms 294172 KB Output is correct
15 Correct 62 ms 294364 KB Output is correct
16 Correct 63 ms 294352 KB Output is correct
17 Correct 67 ms 294224 KB Output is correct
18 Correct 68 ms 294212 KB Output is correct
19 Correct 64 ms 294224 KB Output is correct
20 Correct 64 ms 294224 KB Output is correct
21 Correct 61 ms 294224 KB Output is correct
22 Correct 62 ms 294600 KB Output is correct
23 Correct 63 ms 294484 KB Output is correct
24 Correct 63 ms 294224 KB Output is correct
25 Correct 62 ms 294252 KB Output is correct
26 Correct 64 ms 294228 KB Output is correct
27 Correct 62 ms 293976 KB Output is correct
28 Correct 64 ms 294072 KB Output is correct
29 Correct 61 ms 293968 KB Output is correct
30 Correct 61 ms 293968 KB Output is correct
31 Correct 931 ms 430792 KB Output is correct
32 Correct 92 ms 297416 KB Output is correct
33 Correct 848 ms 432996 KB Output is correct
34 Correct 872 ms 432092 KB Output is correct
35 Correct 918 ms 431148 KB Output is correct
36 Correct 909 ms 434256 KB Output is correct
37 Correct 657 ms 418692 KB Output is correct
38 Correct 663 ms 418072 KB Output is correct
39 Correct 571 ms 391932 KB Output is correct
40 Correct 572 ms 397448 KB Output is correct
41 Correct 652 ms 383868 KB Output is correct
42 Correct 673 ms 386696 KB Output is correct
43 Correct 87 ms 298084 KB Output is correct
44 Correct 650 ms 382388 KB Output is correct
45 Correct 625 ms 373628 KB Output is correct
46 Correct 508 ms 355960 KB Output is correct
47 Correct 385 ms 353732 KB Output is correct
48 Correct 374 ms 349956 KB Output is correct
49 Correct 434 ms 362108 KB Output is correct
50 Correct 526 ms 379752 KB Output is correct
51 Correct 427 ms 357500 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1961 ms 915932 KB Output is correct
2 Correct 1920 ms 957356 KB Output is correct
3 Correct 2161 ms 1031904 KB Output is correct
4 Correct 2083 ms 985360 KB Output is correct
5 Correct 1847 ms 948496 KB Output is correct
6 Correct 1947 ms 897436 KB Output is correct
7 Runtime error 1328 ms 1048576 KB Execution killed with signal 9
8 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 4633 ms 983212 KB Output is correct
2 Correct 201 ms 320692 KB Output is correct
3 Correct 4176 ms 1023568 KB Output is correct
4 Runtime error 2179 ms 1048576 KB Execution killed with signal 9
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 60 ms 293712 KB Output is correct
2 Correct 60 ms 293712 KB Output is correct
3 Correct 60 ms 293712 KB Output is correct
4 Correct 60 ms 293724 KB Output is correct
5 Correct 60 ms 293964 KB Output is correct
6 Correct 63 ms 294228 KB Output is correct
7 Correct 63 ms 294456 KB Output is correct
8 Correct 63 ms 294484 KB Output is correct
9 Correct 62 ms 294600 KB Output is correct
10 Correct 64 ms 294456 KB Output is correct
11 Correct 61 ms 294224 KB Output is correct
12 Correct 63 ms 294252 KB Output is correct
13 Correct 62 ms 293984 KB Output is correct
14 Correct 62 ms 294172 KB Output is correct
15 Correct 62 ms 294364 KB Output is correct
16 Correct 63 ms 294352 KB Output is correct
17 Correct 67 ms 294224 KB Output is correct
18 Correct 68 ms 294212 KB Output is correct
19 Correct 64 ms 294224 KB Output is correct
20 Correct 64 ms 294224 KB Output is correct
21 Correct 61 ms 294224 KB Output is correct
22 Correct 62 ms 294600 KB Output is correct
23 Correct 63 ms 294484 KB Output is correct
24 Correct 63 ms 294224 KB Output is correct
25 Correct 62 ms 294252 KB Output is correct
26 Correct 64 ms 294228 KB Output is correct
27 Correct 62 ms 293976 KB Output is correct
28 Correct 64 ms 294072 KB Output is correct
29 Correct 61 ms 293968 KB Output is correct
30 Correct 61 ms 293968 KB Output is correct
31 Correct 931 ms 430792 KB Output is correct
32 Correct 92 ms 297416 KB Output is correct
33 Correct 848 ms 432996 KB Output is correct
34 Correct 872 ms 432092 KB Output is correct
35 Correct 918 ms 431148 KB Output is correct
36 Correct 909 ms 434256 KB Output is correct
37 Correct 657 ms 418692 KB Output is correct
38 Correct 663 ms 418072 KB Output is correct
39 Correct 571 ms 391932 KB Output is correct
40 Correct 572 ms 397448 KB Output is correct
41 Correct 652 ms 383868 KB Output is correct
42 Correct 673 ms 386696 KB Output is correct
43 Correct 87 ms 298084 KB Output is correct
44 Correct 650 ms 382388 KB Output is correct
45 Correct 625 ms 373628 KB Output is correct
46 Correct 508 ms 355960 KB Output is correct
47 Correct 385 ms 353732 KB Output is correct
48 Correct 374 ms 349956 KB Output is correct
49 Correct 434 ms 362108 KB Output is correct
50 Correct 526 ms 379752 KB Output is correct
51 Correct 427 ms 357500 KB Output is correct
52 Correct 710 ms 441640 KB Output is correct
53 Correct 673 ms 444212 KB Output is correct
54 Correct 794 ms 428248 KB Output is correct
55 Correct 629 ms 406656 KB Output is correct
56 Correct 617 ms 415600 KB Output is correct
57 Correct 643 ms 390776 KB Output is correct
58 Correct 658 ms 409108 KB Output is correct
59 Correct 694 ms 420208 KB Output is correct
60 Correct 669 ms 394104 KB Output is correct
61 Correct 232 ms 342724 KB Output is correct
62 Correct 729 ms 453032 KB Output is correct
63 Correct 716 ms 426824 KB Output is correct
64 Correct 724 ms 422124 KB Output is correct
65 Correct 715 ms 412040 KB Output is correct
66 Correct 696 ms 392076 KB Output is correct
67 Correct 186 ms 320448 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 60 ms 293712 KB Output is correct
2 Correct 60 ms 293712 KB Output is correct
3 Correct 60 ms 293712 KB Output is correct
4 Correct 60 ms 293724 KB Output is correct
5 Correct 60 ms 293964 KB Output is correct
6 Correct 63 ms 294228 KB Output is correct
7 Correct 63 ms 294456 KB Output is correct
8 Correct 63 ms 294484 KB Output is correct
9 Correct 62 ms 294600 KB Output is correct
10 Correct 64 ms 294456 KB Output is correct
11 Correct 61 ms 294224 KB Output is correct
12 Correct 63 ms 294252 KB Output is correct
13 Correct 62 ms 293984 KB Output is correct
14 Correct 62 ms 294172 KB Output is correct
15 Correct 62 ms 294364 KB Output is correct
16 Correct 63 ms 294352 KB Output is correct
17 Correct 67 ms 294224 KB Output is correct
18 Correct 68 ms 294212 KB Output is correct
19 Correct 64 ms 294224 KB Output is correct
20 Correct 64 ms 294224 KB Output is correct
21 Correct 61 ms 294224 KB Output is correct
22 Correct 62 ms 294600 KB Output is correct
23 Correct 63 ms 294484 KB Output is correct
24 Correct 63 ms 294224 KB Output is correct
25 Correct 62 ms 294252 KB Output is correct
26 Correct 64 ms 294228 KB Output is correct
27 Correct 62 ms 293976 KB Output is correct
28 Correct 64 ms 294072 KB Output is correct
29 Correct 61 ms 293968 KB Output is correct
30 Correct 61 ms 293968 KB Output is correct
31 Correct 931 ms 430792 KB Output is correct
32 Correct 92 ms 297416 KB Output is correct
33 Correct 848 ms 432996 KB Output is correct
34 Correct 872 ms 432092 KB Output is correct
35 Correct 918 ms 431148 KB Output is correct
36 Correct 909 ms 434256 KB Output is correct
37 Correct 657 ms 418692 KB Output is correct
38 Correct 663 ms 418072 KB Output is correct
39 Correct 571 ms 391932 KB Output is correct
40 Correct 572 ms 397448 KB Output is correct
41 Correct 652 ms 383868 KB Output is correct
42 Correct 673 ms 386696 KB Output is correct
43 Correct 87 ms 298084 KB Output is correct
44 Correct 650 ms 382388 KB Output is correct
45 Correct 625 ms 373628 KB Output is correct
46 Correct 508 ms 355960 KB Output is correct
47 Correct 385 ms 353732 KB Output is correct
48 Correct 374 ms 349956 KB Output is correct
49 Correct 434 ms 362108 KB Output is correct
50 Correct 526 ms 379752 KB Output is correct
51 Correct 427 ms 357500 KB Output is correct
52 Correct 1961 ms 915932 KB Output is correct
53 Correct 1920 ms 957356 KB Output is correct
54 Correct 2161 ms 1031904 KB Output is correct
55 Correct 2083 ms 985360 KB Output is correct
56 Correct 1847 ms 948496 KB Output is correct
57 Correct 1947 ms 897436 KB Output is correct
58 Runtime error 1328 ms 1048576 KB Execution killed with signal 9
59 Halted 0 ms 0 KB -