Submission #864959

# Submission time Handle Problem Language Result Execution time Memory
864959 2023-10-23T19:28:52 Z danikoynov New Home (APIO18_new_home) C++14
57 / 100
2163 ms 907096 KB
    #include<bits/stdc++.h>
    #define endl '\n'
        
    using namespace std;
    typedef long long ll;
        
    const int maxn = 4e5 + 10, inf = 1e9;
        
    struct store
    {
        int x, t, a, b;
    }s[maxn];
        
    struct query
    {
        int l, y, idx;
    }task[maxn];
        
    int n, k, q;
    int readInt () {
        bool minus = false;
        int result = 0;
        char ch;
        ch = getchar();
        while (true) {
            if (ch == '-') break;
            if (ch >= '0' && ch <= '9') break;
            ch = getchar();
        }
        if (ch == '-') minus = true; else result = ch-'0';
        while (true) {
            ch = getchar();
            if (ch < '0' || ch > '9') break;
            result = result*10 + (ch - '0');
        }
        if (minus)
            return -result;
        else
            return result;
    }
    void input()
    {
        n = readInt();
        k = readInt();
        q = readInt();
        ///cin >> n >> k >> q;
        for (int i = 1; i <= n; i ++)
        {
            s[i].x = readInt();
            s[i].t = readInt();
            s[i].a = readInt();
            s[i].b = readInt();
            ///        cin >> s[i].x >> s[i].t >> s[i].a >> s[i].b;
        }
        
        for (int i = 1; i <= q; i ++)
        {
                task[i].l = readInt();
                task[i].y = readInt();
                task[i].idx = i;
            ///cin >> task[i].l >> task[i].y, task[i].idx = i;
        }
    }
        
    unordered_map < int, int > rev;
    int dif, back_to[2 * maxn];
        
     
     
        
    bool cmp_query(query &t1, query &t2)
    {
        return t1.l < t2.l;
    }
        
    struct event
    {
        int type, cor, add, arrive;
        
        event(int _type, int _cor, int _add, int _arrive)
        {
            type = _type;
            cor = _cor;
            add = _add;
            arrive = _arrive;
        }
    };
        
    bool cmp_event(event &e1, event &e2)
    {
        if (e1.arrive != e2.arrive)
            return e1.arrive < e2.arrive;
        
        if (e1.add != e2.add)
            return e1.add < e2.add;
        
        return e1.cor < e2.cor; /// could have dublicates
    }
        
     
        
    multiset < int > act[maxn];
        
    struct interval_ray
    {
        int s, e;
        pair < int, int > ray;
        
        interval_ray(int _s, int _e, pair < int, int > _ray)
        {
            s = _s;
            e = _e;
            ray = _ray;
        }
     
        interval_ray(int &_s, int &_e, pair < int, int > &_ray)
        {
            s = _s;
            e = _e;
            ray = _ray;
        }
    };
     
    vector < interval_ray > seg_left, seg_right;
        struct hash_pair {
        template <class T1, class T2>
        long long operator()(const pair<T1, T2>& p) const
        {
            auto hash1 = hash<T1>{}(p.first);
            auto hash2 = hash<T2>{}(p.second);
            return (hash1 << 16) + hash2;             
        }
    };
     
    unordered_map < pair < int, int >, int, hash_pair > ray_right[maxn], ray_left[maxn];
    vector < int > dat;
    void make_left_segment(int start, int finish, int timer, int type)
    {
        ///cout << "left " << start << " " << finish << " " << timer << endl;
        seg_left.push_back(interval_ray(ray_left[type][{start, finish}], timer - 1, {start, finish}));
        ray_left[type][{start, finish}] = 0;
    }
        
    void make_right_segment(int start, int finish, int timer, int type)
    {
        seg_right.push_back(interval_ray(ray_right[type][{start, finish}], timer - 1, {start, finish}));
        ray_right[type][{start, finish}] = 0;
    }
        
    void add_event(int type, int cor, int timer)
    {
        multiset < int > :: iterator it = act[type].upper_bound(cor);
        int aft = *it;
        int bef = *prev(it);
        
        if (bef == -inf && aft == inf)
        {
            
            make_right_segment(-inf, inf, timer, type);
            ray_left[type][{cor, -inf}] = timer;
            ray_right[type][{cor, +inf}] = timer;
        }
        else
        if (bef == - inf)
        {
            make_left_segment(aft, -inf, timer, type);
            int mid = (cor + aft) / 2;
            ray_right[type][{cor, mid}] = timer;
            ray_left[type][{aft, mid + 1}] = timer;
            ray_left[type][{cor, -inf}] = timer;
        }
        else
        if (aft == inf)
        {
            make_right_segment(bef, inf, timer, type);
            int mid = (bef + cor) / 2;
            ray_left[type][{cor, mid + 1}] = timer;
            ray_right[type][{bef, mid}] = timer;
            ray_right[type][{cor, inf}] = timer;
        }
        else
        {
            int mid = (bef + aft) / 2;
            make_right_segment(bef, mid, timer, type);
            make_left_segment(aft, mid + 1, timer, type);
            int mid_left = (bef + cor) / 2;
            ray_right[type][{bef, mid_left}] = timer;
            ray_left[type][{cor, mid_left + 1}] = timer;
            int mid_right = (cor + aft) / 2;
            ray_right[type][{cor, mid_right}] = timer;
            ray_left[type][{aft, mid_right + 1}] = timer;
        }
        
        act[type].insert(cor);
    }
        
        
    void remove_event(int type, int cor, int timer)
    {
        multiset < int > :: iterator it = act[type].find(cor);
        int aft = *next(it);
        int bef = *prev(it);
        
        if (bef == -inf && aft == inf)
        {
            ///cout << "reverse " << timer << endl;
        
            make_left_segment(cor, -inf, timer, type);
            make_right_segment(cor, +inf, timer, type);
            ray_right[type][{-inf, inf}] = timer;
        
        }
        else
        if (bef == -inf)
        {
        
            ///cout << "step " << timer << endl;
            make_left_segment(cor, -inf, timer, type);
            int mid = (cor + aft) / 2;
            make_right_segment(cor, mid, timer, type);
            make_left_segment(aft, mid + 1, timer, type);
            ray_left[type][{aft, -inf}] = timer;
        
        
        }
        else
        if (aft == inf)
        {
        
            make_right_segment(cor, inf, timer, type);
            int mid = (bef + cor) / 2;
            make_left_segment(cor, mid + 1, timer, type);
            make_right_segment(bef, mid, timer, type);
            ray_right[type][{bef, inf}] = timer;
        }
        else
        {
            int mid = (bef + aft) / 2;
            ///assert((ray_right[type][{bef, mid}]) == 0);
            ///assert((ray_left[type][{aft, mid + 1}]) == 0);
        
            int mid_left = (bef + cor) / 2;
            make_right_segment(bef, mid_left, timer, type);
            make_left_segment(cor, mid_left + 1, timer, type);
            int mid_right = (aft + cor) / 2;
            make_right_segment(cor, mid_right, timer, type);
            make_left_segment(aft, mid_right + 1, timer, type);
        
                    ray_right[type][{bef, mid}] = timer;
            ray_left[type][{aft, mid + 1}] = timer;
        
        }
        
        act[type].erase(it);
    }
        
    int ans[maxn];
        
    vector < interval_ray > tree_left[maxn * 4], tree_right[maxn * 4];
    int pt_lf[4 * maxn], bs_lf[4 * maxn];
    int pt_rf[4 * maxn], bs_rf[4 * maxn];
        
    bool cmp_ray_second(interval_ray r1, interval_ray r2)
    {
        return r1.ray.second < r2.ray.second;
    }
    void update_range(int root, int left, int right, int qleft, int qright, interval_ray &ray, int type)
    {
        if (left > qright || right < qleft)
            return;
        
        if (left >= qleft && right <= qright)
        {
            if (type == -1)
                tree_left[root].push_back(ray);
            else
                tree_right[root].push_back(ray);
            return;
        }
        
        int mid = (left + right) / 2;
        update_range(root * 2, left, mid, qleft, qright, ray, type);
        update_range(root * 2 + 1, mid + 1, right, qleft, qright, ray, type);
        
    }
        
    unordered_map < int, int > event_times;
        
    void answer_queries()
    {
        sort(task + 1, task + q + 1, cmp_query);
        
        vector < event > events;
        for (int i = 1; i <= n; i ++)
        {
            events.push_back(event(s[i].t, s[i].x, 1, s[i].a));
            events.push_back(event(s[i].t, s[i].x, -1, s[i].b + 1));
        }
        
        sort(events.begin(), events.end(), cmp_event);
        
        for (int i = 1; i <= k; i ++)
        {
            act[i].insert(-inf);
            act[i].insert(inf);
            ray_right[i][{-inf, inf}] = 1;
        }
        
        
        int cnt = 0;
        dat.push_back(1);
        dat.push_back(0);
        
        for (event cur : events)
        {
            ///dat.push_back(cur.arrive - 1);
            dat.push_back(cur.arrive);
            ///cout << "event " << cur.arrive << " " << cur.add << " " << cur.cor << " " << cur.type << endl;
            if (cur.add == 1)
                add_event(cur.type, cur.cor, cur.arrive);
            else
                remove_event(cur.type, cur.cor, cur.arrive);
        }
        
        dat.push_back(inf - 1);
        dat.push_back(inf);
        
        for (int i = 1; i <= q; i ++)
            dat.push_back(task[i].y);
        
        sort(dat.begin(), dat.end());
        cnt ++;
        event_times[dat[0]] = cnt;
        for (int i = 1; i < dat.size(); i ++)
        {
            if (dat[i] == dat[i - 1])
                continue;
            cnt ++;
            event_times[dat[i]] = cnt;
        }
        
        
        for (int i = 1; i <= k; i ++)
            for (auto it : ray_right[i])
            {
                ///cout << it -> first.first << " :: " << it -> first.second << " " << it -> second << endl;
                if (it.second != 0)
                    make_right_segment(it.first.first, inf, inf, i);
            }
        
        
        sort(seg_right.begin(), seg_right.end(), cmp_ray_second);
        sort(seg_left.begin(), seg_left.end(), cmp_ray_second);
        for (interval_ray cur : seg_left)
        {
            //assert(event_times[cur.e + 1] != 0);
            update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, -1);
        ///    cout << "left ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
        }
        
        for (interval_ray cur : seg_right)
        {
            //assert(event_times[cur.e + 1] != 0);
            update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, 1);
            ///cout << "right ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
        }
        
        
        for (int i = 1; i <= 4 * cnt; i ++)
        {
            pt_rf[i] = (int)(tree_right[i].size()) - 1;
            bs_rf[i] = inf;
        
            pt_lf[i] = 0;
            bs_lf[i] = -inf;
            ///sort(tree_right[i].begin(), tree_right[i].end(), cmp_ray_second);
            ///sort(tree_left[i].begin(), tree_left[i].end(), cmp_ray_second);
        }
        
        for (int i = q; i > 0; i --)
        {
            int longest = 0;
            int pos = event_times[task[i].y];
            int root = 1, left = 1, right = cnt;
        
            while(true)
            {
        
                while(pt_rf[root] >= 0 && task[i].l <= tree_right[root][pt_rf[root]].ray.second)
                {
                    bs_rf[root] = min(bs_rf[root], tree_right[root][pt_rf[root]].ray.first);
                    pt_rf[root] --;
                }
                longest = max(longest, task[i].l - bs_rf[root]);
        
        
                if (left == right)
                    break;
        
                int mid = (left + right) / 2;
                if (pos <= mid)
                {
                    root *= 2;
                    right = mid;
                }
                else
                {
                    root = root * 2 + 1;
                    left = mid + 1;
                }
            }
        
            ans[task[i].idx] = max(ans[task[i].idx], longest);
        }
        
        for (int i = 1; i <= q; i ++)
        {
            int longest = 0;
            int pos = event_times[task[i].y];
            int root = 1, left = 1, right = cnt;
            while(true)
            {
                ///cout << "step " << root << " " << left << " " << right << endl;
                while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
                {
                    bs_lf[root] = max(bs_lf[root], tree_left[root][pt_lf[root]].ray.first);
                    pt_lf[root] ++;
                }
                longest = max(longest, bs_lf[root] - task[i].l);
                /**for (interval_ray cur : tree_left[root])
                {
                    if (task[i].l >= cur.ray.second)
                        longest = max(longest, cur.ray.first - task[i].l);
                }*/
        
        
                if (left == right)
                    break;
        
                int mid = (left + right) / 2;
                if (pos <= mid)
                {
                    root *= 2;
                    right = mid;
                }
                else
                {
                    root = root * 2 + 1;
                    left = mid + 1;
                }
            }
        
            ans[task[i].idx] = max(ans[task[i].idx], longest);
        }
        
        for (int i = 1; i <= q; i ++)
        {
            if (ans[i] > 2e8)
                cout << -1 << endl;
            else
                cout << ans[i] << endl;
        }
    }
    void solve()
    {
        input();
        ///compress_data();
        answer_queries();
    }
        
    void speed()
    {
        ios_base::sync_with_stdio(false);
        cin.tie(NULL);
        cout.tie(NULL);
    }
    int main()
    {
        
        speed();
        solve();
        return 0;
    }
        
    /**
    2 1 2
    3 1 1 3
    5 1 3 4
    3 3
    3 4
        
        
        
        
    4 2 4
    3 1 1 10
    9 2 2 4
    7 2 5 7
    4 1 8 10
    5 3
    5 6
    5 9
    1 10
        
    2 1 3
    1 1 1 4
    1 1 2 6
    1 3
    1 5
    1 7
        
    1 1 1
    100000000 1 1 1
    1 1
        
        
        
    */

Compilation message

new_home.cpp: In function 'void answer_queries()':
new_home.cpp:334:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  334 |         for (int i = 1; i < dat.size(); i ++)
      |                         ~~^~~~~~~~~~~~
new_home.cpp:424:35: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<interval_ray>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  424 |                 while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
      |                       ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 34 ms 152148 KB Output is correct
2 Correct 31 ms 152280 KB Output is correct
3 Correct 31 ms 152156 KB Output is correct
4 Correct 31 ms 152332 KB Output is correct
5 Correct 32 ms 152400 KB Output is correct
6 Correct 33 ms 152668 KB Output is correct
7 Correct 33 ms 153000 KB Output is correct
8 Correct 32 ms 152660 KB Output is correct
9 Correct 32 ms 152912 KB Output is correct
10 Correct 34 ms 152920 KB Output is correct
11 Correct 33 ms 152512 KB Output is correct
12 Correct 34 ms 152924 KB Output is correct
13 Correct 33 ms 152400 KB Output is correct
14 Correct 31 ms 152388 KB Output is correct
15 Correct 35 ms 152652 KB Output is correct
16 Correct 33 ms 152748 KB Output is correct
17 Correct 33 ms 152660 KB Output is correct
18 Correct 33 ms 152668 KB Output is correct
19 Correct 33 ms 152864 KB Output is correct
20 Correct 34 ms 152668 KB Output is correct
21 Correct 31 ms 152408 KB Output is correct
22 Correct 32 ms 152912 KB Output is correct
23 Correct 33 ms 152668 KB Output is correct
24 Correct 33 ms 152664 KB Output is correct
25 Correct 33 ms 152752 KB Output is correct
26 Correct 33 ms 152740 KB Output is correct
27 Correct 31 ms 152412 KB Output is correct
28 Correct 33 ms 152660 KB Output is correct
29 Correct 34 ms 152668 KB Output is correct
30 Correct 32 ms 152404 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 34 ms 152148 KB Output is correct
2 Correct 31 ms 152280 KB Output is correct
3 Correct 31 ms 152156 KB Output is correct
4 Correct 31 ms 152332 KB Output is correct
5 Correct 32 ms 152400 KB Output is correct
6 Correct 33 ms 152668 KB Output is correct
7 Correct 33 ms 153000 KB Output is correct
8 Correct 32 ms 152660 KB Output is correct
9 Correct 32 ms 152912 KB Output is correct
10 Correct 34 ms 152920 KB Output is correct
11 Correct 33 ms 152512 KB Output is correct
12 Correct 34 ms 152924 KB Output is correct
13 Correct 33 ms 152400 KB Output is correct
14 Correct 31 ms 152388 KB Output is correct
15 Correct 35 ms 152652 KB Output is correct
16 Correct 33 ms 152748 KB Output is correct
17 Correct 33 ms 152660 KB Output is correct
18 Correct 33 ms 152668 KB Output is correct
19 Correct 33 ms 152864 KB Output is correct
20 Correct 34 ms 152668 KB Output is correct
21 Correct 31 ms 152408 KB Output is correct
22 Correct 32 ms 152912 KB Output is correct
23 Correct 33 ms 152668 KB Output is correct
24 Correct 33 ms 152664 KB Output is correct
25 Correct 33 ms 152752 KB Output is correct
26 Correct 33 ms 152740 KB Output is correct
27 Correct 31 ms 152412 KB Output is correct
28 Correct 33 ms 152660 KB Output is correct
29 Correct 34 ms 152668 KB Output is correct
30 Correct 32 ms 152404 KB Output is correct
31 Correct 957 ms 301024 KB Output is correct
32 Correct 110 ms 169160 KB Output is correct
33 Correct 925 ms 303800 KB Output is correct
34 Correct 950 ms 302164 KB Output is correct
35 Correct 951 ms 303484 KB Output is correct
36 Correct 960 ms 302888 KB Output is correct
37 Correct 742 ms 290196 KB Output is correct
38 Correct 730 ms 290744 KB Output is correct
39 Correct 598 ms 263860 KB Output is correct
40 Correct 641 ms 270528 KB Output is correct
41 Correct 669 ms 251500 KB Output is correct
42 Correct 670 ms 254580 KB Output is correct
43 Correct 89 ms 165704 KB Output is correct
44 Correct 667 ms 250232 KB Output is correct
45 Correct 647 ms 241532 KB Output is correct
46 Correct 514 ms 223696 KB Output is correct
47 Correct 393 ms 220228 KB Output is correct
48 Correct 362 ms 216444 KB Output is correct
49 Correct 441 ms 229332 KB Output is correct
50 Correct 519 ms 246476 KB Output is correct
51 Correct 433 ms 224572 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2019 ms 805228 KB Output is correct
2 Correct 2035 ms 805068 KB Output is correct
3 Correct 2004 ms 907096 KB Output is correct
4 Correct 1964 ms 824836 KB Output is correct
5 Correct 2032 ms 781044 KB Output is correct
6 Correct 2109 ms 790240 KB Output is correct
7 Correct 2033 ms 866780 KB Output is correct
8 Correct 1925 ms 823972 KB Output is correct
9 Correct 2101 ms 786624 KB Output is correct
10 Correct 2163 ms 836848 KB Output is correct
11 Correct 1839 ms 773864 KB Output is correct
12 Correct 1941 ms 813520 KB Output is correct
# Verdict Execution time Memory Grader output
1 Runtime error 1834 ms 606092 KB Execution killed with signal 6
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 34 ms 152148 KB Output is correct
2 Correct 31 ms 152280 KB Output is correct
3 Correct 31 ms 152156 KB Output is correct
4 Correct 31 ms 152332 KB Output is correct
5 Correct 32 ms 152400 KB Output is correct
6 Correct 33 ms 152668 KB Output is correct
7 Correct 33 ms 153000 KB Output is correct
8 Correct 32 ms 152660 KB Output is correct
9 Correct 32 ms 152912 KB Output is correct
10 Correct 34 ms 152920 KB Output is correct
11 Correct 33 ms 152512 KB Output is correct
12 Correct 34 ms 152924 KB Output is correct
13 Correct 33 ms 152400 KB Output is correct
14 Correct 31 ms 152388 KB Output is correct
15 Correct 35 ms 152652 KB Output is correct
16 Correct 33 ms 152748 KB Output is correct
17 Correct 33 ms 152660 KB Output is correct
18 Correct 33 ms 152668 KB Output is correct
19 Correct 33 ms 152864 KB Output is correct
20 Correct 34 ms 152668 KB Output is correct
21 Correct 31 ms 152408 KB Output is correct
22 Correct 32 ms 152912 KB Output is correct
23 Correct 33 ms 152668 KB Output is correct
24 Correct 33 ms 152664 KB Output is correct
25 Correct 33 ms 152752 KB Output is correct
26 Correct 33 ms 152740 KB Output is correct
27 Correct 31 ms 152412 KB Output is correct
28 Correct 33 ms 152660 KB Output is correct
29 Correct 34 ms 152668 KB Output is correct
30 Correct 32 ms 152404 KB Output is correct
31 Correct 957 ms 301024 KB Output is correct
32 Correct 110 ms 169160 KB Output is correct
33 Correct 925 ms 303800 KB Output is correct
34 Correct 950 ms 302164 KB Output is correct
35 Correct 951 ms 303484 KB Output is correct
36 Correct 960 ms 302888 KB Output is correct
37 Correct 742 ms 290196 KB Output is correct
38 Correct 730 ms 290744 KB Output is correct
39 Correct 598 ms 263860 KB Output is correct
40 Correct 641 ms 270528 KB Output is correct
41 Correct 669 ms 251500 KB Output is correct
42 Correct 670 ms 254580 KB Output is correct
43 Correct 89 ms 165704 KB Output is correct
44 Correct 667 ms 250232 KB Output is correct
45 Correct 647 ms 241532 KB Output is correct
46 Correct 514 ms 223696 KB Output is correct
47 Correct 393 ms 220228 KB Output is correct
48 Correct 362 ms 216444 KB Output is correct
49 Correct 441 ms 229332 KB Output is correct
50 Correct 519 ms 246476 KB Output is correct
51 Correct 433 ms 224572 KB Output is correct
52 Correct 678 ms 296052 KB Output is correct
53 Correct 608 ms 297856 KB Output is correct
54 Correct 774 ms 290252 KB Output is correct
55 Correct 625 ms 269512 KB Output is correct
56 Correct 614 ms 277888 KB Output is correct
57 Correct 646 ms 256628 KB Output is correct
58 Correct 649 ms 273976 KB Output is correct
59 Correct 644 ms 279832 KB Output is correct
60 Correct 682 ms 260620 KB Output is correct
61 Correct 183 ms 197952 KB Output is correct
62 Correct 663 ms 306524 KB Output is correct
63 Correct 684 ms 287464 KB Output is correct
64 Correct 688 ms 285396 KB Output is correct
65 Correct 702 ms 277520 KB Output is correct
66 Correct 699 ms 259796 KB Output is correct
67 Correct 208 ms 188420 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 34 ms 152148 KB Output is correct
2 Correct 31 ms 152280 KB Output is correct
3 Correct 31 ms 152156 KB Output is correct
4 Correct 31 ms 152332 KB Output is correct
5 Correct 32 ms 152400 KB Output is correct
6 Correct 33 ms 152668 KB Output is correct
7 Correct 33 ms 153000 KB Output is correct
8 Correct 32 ms 152660 KB Output is correct
9 Correct 32 ms 152912 KB Output is correct
10 Correct 34 ms 152920 KB Output is correct
11 Correct 33 ms 152512 KB Output is correct
12 Correct 34 ms 152924 KB Output is correct
13 Correct 33 ms 152400 KB Output is correct
14 Correct 31 ms 152388 KB Output is correct
15 Correct 35 ms 152652 KB Output is correct
16 Correct 33 ms 152748 KB Output is correct
17 Correct 33 ms 152660 KB Output is correct
18 Correct 33 ms 152668 KB Output is correct
19 Correct 33 ms 152864 KB Output is correct
20 Correct 34 ms 152668 KB Output is correct
21 Correct 31 ms 152408 KB Output is correct
22 Correct 32 ms 152912 KB Output is correct
23 Correct 33 ms 152668 KB Output is correct
24 Correct 33 ms 152664 KB Output is correct
25 Correct 33 ms 152752 KB Output is correct
26 Correct 33 ms 152740 KB Output is correct
27 Correct 31 ms 152412 KB Output is correct
28 Correct 33 ms 152660 KB Output is correct
29 Correct 34 ms 152668 KB Output is correct
30 Correct 32 ms 152404 KB Output is correct
31 Correct 957 ms 301024 KB Output is correct
32 Correct 110 ms 169160 KB Output is correct
33 Correct 925 ms 303800 KB Output is correct
34 Correct 950 ms 302164 KB Output is correct
35 Correct 951 ms 303484 KB Output is correct
36 Correct 960 ms 302888 KB Output is correct
37 Correct 742 ms 290196 KB Output is correct
38 Correct 730 ms 290744 KB Output is correct
39 Correct 598 ms 263860 KB Output is correct
40 Correct 641 ms 270528 KB Output is correct
41 Correct 669 ms 251500 KB Output is correct
42 Correct 670 ms 254580 KB Output is correct
43 Correct 89 ms 165704 KB Output is correct
44 Correct 667 ms 250232 KB Output is correct
45 Correct 647 ms 241532 KB Output is correct
46 Correct 514 ms 223696 KB Output is correct
47 Correct 393 ms 220228 KB Output is correct
48 Correct 362 ms 216444 KB Output is correct
49 Correct 441 ms 229332 KB Output is correct
50 Correct 519 ms 246476 KB Output is correct
51 Correct 433 ms 224572 KB Output is correct
52 Correct 2019 ms 805228 KB Output is correct
53 Correct 2035 ms 805068 KB Output is correct
54 Correct 2004 ms 907096 KB Output is correct
55 Correct 1964 ms 824836 KB Output is correct
56 Correct 2032 ms 781044 KB Output is correct
57 Correct 2109 ms 790240 KB Output is correct
58 Correct 2033 ms 866780 KB Output is correct
59 Correct 1925 ms 823972 KB Output is correct
60 Correct 2101 ms 786624 KB Output is correct
61 Correct 2163 ms 836848 KB Output is correct
62 Correct 1839 ms 773864 KB Output is correct
63 Correct 1941 ms 813520 KB Output is correct
64 Runtime error 1834 ms 606092 KB Execution killed with signal 6
65 Halted 0 ms 0 KB -