Submission #864949

# Submission time Handle Problem Language Result Execution time Memory
864949 2023-10-23T19:03:48 Z danikoynov New Home (APIO18_new_home) C++14
57 / 100
5000 ms 958808 KB
#include<bits/stdc++.h>
// #pragma __attribute__ ((always_inline)) inline
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
#define endl '\n'
    
using namespace std;
typedef long long ll;
    
const int maxn = 6e5 + 10, inf = 1e9;
    
struct store
{
    int x, t, a, b;
}s[maxn];
    
struct query
{
    int l, y, idx;
}task[maxn];
    
int n, k, q;
int readInt () {
    bool minus = false;
    int result = 0;
    char ch;
    ch = getchar();
    while (true) {
        if (ch == '-') break;
        if (ch >= '0' && ch <= '9') break;
        ch = getchar();
    }
    if (ch == '-') minus = true; else result = ch-'0';
    while (true) {
        ch = getchar();
        if (ch < '0' || ch > '9') break;
        result = result*10 + (ch - '0');
    }
    if (minus)
        return -result;
    else
        return result;
}
void input()
{
    n = readInt();
    k = readInt();
    q = readInt();
    ///cin >> n >> k >> q;
    for (int i = 1; i <= n; i ++)
    {
        s[i].x = readInt();
        s[i].t = readInt();
        s[i].a = readInt();
        s[i].b = readInt();
        ///        cin >> s[i].x >> s[i].t >> s[i].a >> s[i].b;
    }
    
    for (int i = 1; i <= q; i ++)
    {
            task[i].l = readInt();
            task[i].y = readInt();
            task[i].idx = i;
        ///cin >> task[i].l >> task[i].y, task[i].idx = i;
    }
}
    
unordered_map < int, int > rev;
int dif, back_to[2 * maxn];
    


    
bool cmp_query(query &t1, query &t2)
{
    return t1.l < t2.l;
}
    
struct event
{
    int type, cor, add, arrive;
    
    event(int _type, int _cor, int _add, int _arrive)
    {
        type = _type;
        cor = _cor;
        add = _add;
        arrive = _arrive;
    }
};
    
bool cmp_event(event &e1, event &e2)
{
    if (e1.arrive != e2.arrive)
        return e1.arrive < e2.arrive;
    
    if (e1.add != e2.add)
        return e1.add < e2.add;
    
    return e1.cor < e2.cor; /// could have dublicates
}
    
    
    
multiset < int > act[maxn];
    
struct interval_ray
{
    int s, e;
    pair < int, int > ray;
    
    interval_ray(int _s, int _e, pair < int, int > _ray)
    {
        s = _s;
        e = _e;
        ray = _ray;
    }

    interval_ray(int &_s, int &_e, pair < int, int > &_ray)
    {
        s = _s;
        e = _e;
        ray = _ray;
    }
};
    
struct hash_pair {
    template <class T1, class T2>
    size_t operator()(const pair<T1, T2>& p) const
    {
        auto hash1 = hash<T1>{}(p.first);
        auto hash2 = hash<T2>{}(p.second);
 
        if (hash1 != hash2) {
            return hash1 ^ hash2;              
        }
         
        // If hash1 == hash2, their XOR is zero.
          return hash1;
    }
};
 
vector < interval_ray > seg_left, seg_right;
    
// unordered_map <pair<int, int>, int, hash_pair> 
map <pair<int, int>, int>ray_right[maxn], ray_left[maxn];
vector < int > dat;

void make_left_segment(const int &start, const int &finish, const int &timer, const int &type)
{
    ///cout << "left " << start << " " << finish << " " << timer << endl;
    seg_left.push_back(interval_ray(ray_left[type][{start, finish}], timer - 1, {start, finish}));
    ray_left[type][{start, finish}] = 0;
}
    
void make_right_segment(const int &start, const int &finish, const int &timer, const int &type)
{
    seg_right.push_back(interval_ray(ray_right[type][{start, finish}], timer - 1, {start, finish}));
    ray_right[type][{start, finish}] = 0;
}
    
void add_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].upper_bound(cor);
    int aft = *it;
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        
        make_right_segment(-inf, inf, timer, type);
        ray_left[type][{cor, -inf}] = timer;
        ray_right[type][{cor, +inf}] = timer;
    }
    else
    if (bef == - inf)
    {
        make_left_segment(aft, -inf, timer, type);
        int mid = (cor + aft) / 2;
        ray_right[type][{cor, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
        ray_left[type][{cor, -inf}] = timer;
    }
    else
    if (aft == inf)
    {
        make_right_segment(bef, inf, timer, type);
        int mid = (bef + cor) / 2;
        ray_left[type][{cor, mid + 1}] = timer;
        ray_right[type][{bef, mid}] = timer;
        ray_right[type][{cor, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        make_right_segment(bef, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
        int mid_left = (bef + cor) / 2;
        ray_right[type][{bef, mid_left}] = timer;
        ray_left[type][{cor, mid_left + 1}] = timer;
        int mid_right = (cor + aft) / 2;
        ray_right[type][{cor, mid_right}] = timer;
        ray_left[type][{aft, mid_right + 1}] = timer;
    }
    
    act[type].insert(cor);
}
    
    
void remove_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].find(cor);
    int aft = *next(it);
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        ///cout << "reverse " << timer << endl;
    
        make_left_segment(cor, -inf, timer, type);
        make_right_segment(cor, +inf, timer, type);
        ray_right[type][{-inf, inf}] = timer;
    
    }
    else
    if (bef == -inf)
    {
    
        ///cout << "step " << timer << endl;
        make_left_segment(cor, -inf, timer, type);
        int mid = (cor + aft) / 2;
        make_right_segment(cor, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
                ray_left[type][{aft, -inf}] = timer;
    
    
    }
    else
    if (aft == inf)
    {
    
        make_right_segment(cor, inf, timer, type);
        int mid = (bef + cor) / 2;
        make_left_segment(cor, mid + 1, timer, type);
        make_right_segment(bef, mid, timer, type);
                ray_right[type][{bef, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        ///assert((ray_right[type][{bef, mid}]) == 0);
        ///assert((ray_left[type][{aft, mid + 1}]) == 0);
    
        int mid_left = (bef + cor) / 2;
        make_right_segment(bef, mid_left, timer, type);
        make_left_segment(cor, mid_left + 1, timer, type);
        int mid_right = (aft + cor) / 2;
        make_right_segment(cor, mid_right, timer, type);
        make_left_segment(aft, mid_right + 1, timer, type);
    
                ray_right[type][{bef, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
    
    }
    
    act[type].erase(it);
}
    
int ans[maxn];
    
vector < interval_ray > tree_left[maxn * 4], tree_right[maxn * 4];
int pt_lf[4 * maxn], bs_lf[4 * maxn];
int pt_rf[4 * maxn], bs_rf[4 * maxn];
    
bool cmp_ray_second(interval_ray r1, interval_ray r2)
{
    return r1.ray.second < r2.ray.second;
}
void update_range(int root, int left, int right, int qleft, int qright, interval_ray &ray, int type)
{
    if (left > qright || right < qleft)
        return;
    
    if (left >= qleft && right <= qright)
    {
        if (type == -1)
            tree_left[root].push_back(ray);
        else
            tree_right[root].push_back(ray);
        return;
    }
    
    int mid = (left + right) / 2;
    update_range(root * 2, left, mid, qleft, qright, ray, type);
    update_range(root * 2 + 1, mid + 1, right, qleft, qright, ray, type);
    
}
    
unordered_map < int, int > event_times;
    
void answer_queries()
{
    sort(task + 1, task + q + 1, cmp_query);
    
    vector < event > events;
    for (int i = 1; i <= n; i ++)
    {
        events.push_back(event(s[i].t, s[i].x, 1, s[i].a));
        events.push_back(event(s[i].t, s[i].x, -1, s[i].b + 1));
    }
    
    sort(events.begin(), events.end(), cmp_event);
    
    for (int i = 1; i <= k; i ++)
    {
        act[i].insert(-inf);
        act[i].insert(inf);
        ray_right[i][{-inf, inf}] = 1;
    }
    
    
    int cnt = 0;
    dat.push_back(1);
    dat.push_back(0);
    
    for (event cur : events)
    {
        ///dat.push_back(cur.arrive - 1);
        dat.push_back(cur.arrive);
        ///cout << "event " << cur.arrive << " " << cur.add << " " << cur.cor << " " << cur.type << endl;
        if (cur.add == 1)
            add_event(cur.type, cur.cor, cur.arrive);
        else
            remove_event(cur.type, cur.cor, cur.arrive);
    }
    
    dat.push_back(inf - 1);
    dat.push_back(inf);
    
    for (int i = 1; i <= q; i ++)
        dat.push_back(task[i].y);
    
    sort(dat.begin(), dat.end());
    cnt ++;
    event_times[dat[0]] = cnt;
    for (int i = 1; i < dat.size(); i ++)
    {
        if (dat[i] == dat[i - 1])
            continue;
        cnt ++;
        event_times[dat[i]] = cnt;
    }
    
    map < pair < int, int >, int > :: iterator it;
    for (int i = 1; i <= k; i ++)
        for (it = ray_right[i].begin(); it != ray_right[i].end(); it ++)
        {
            ///cout << it -> first.first << " :: " << it -> first.second << " " << it -> second << endl;
            if (it -> second != 0)
                make_right_segment(it -> first.first, it -> first.second, inf, i);
        }
    
    
    for (int i = 1; i <= k; i ++)
        for (it = ray_left[i].begin(); it != ray_left[i].end(); it ++)
        {
            if (it -> second != 0)
            {
            ///cout << "here " << endl;
                make_left_segment(it -> first.first, it -> first.second, inf, i);
            }
        }
    
    sort(seg_right.begin(), seg_right.end(), cmp_ray_second);
    sort(seg_left.begin(), seg_left.end(), cmp_ray_second);
    for (interval_ray cur : seg_left)
    {
        //assert(event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, -1);
    ///    cout << "left ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }
    
    for (interval_ray cur : seg_right)
    {
        //assert(event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, 1);
        ///cout << "right ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }
    
    
    for (int i = 1; i <= 4 * cnt; i ++)
    {
        pt_rf[i] = (int)(tree_right[i].size()) - 1;
        bs_rf[i] = inf;
    
        pt_lf[i] = 0;
        bs_lf[i] = -inf;
        ///sort(tree_right[i].begin(), tree_right[i].end(), cmp_ray_second);
        ///sort(tree_left[i].begin(), tree_left[i].end(), cmp_ray_second);
    }
    
    for (int i = q; i > 0; i --)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
    
        while(true)
        {
    
            while(pt_rf[root] >= 0 && task[i].l <= tree_right[root][pt_rf[root]].ray.second)
            {
                bs_rf[root] = min(bs_rf[root], tree_right[root][pt_rf[root]].ray.first);
                pt_rf[root] --;
            }
            longest = max(longest, task[i].l - bs_rf[root]);
    
    
            if (left == right)
                break;
    
            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }
    
        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
    
    for (int i = 1; i <= q; i ++)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
        while(true)
        {
            ///cout << "step " << root << " " << left << " " << right << endl;
            while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
            {
                bs_lf[root] = max(bs_lf[root], tree_left[root][pt_lf[root]].ray.first);
                pt_lf[root] ++;
            }
            longest = max(longest, bs_lf[root] - task[i].l);
            /**for (interval_ray cur : tree_left[root])
            {
                if (task[i].l >= cur.ray.second)
                    longest = max(longest, cur.ray.first - task[i].l);
            }*/
    
    
            if (left == right)
                break;
    
            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }
    
        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
    
    for (int i = 1; i <= q; i ++)
    {
        if (ans[i] > 2e8)
            cout << -1 << endl;
        else
            cout << ans[i] << endl;
    }
}
void solve()
{
    input();
    ///compress_data();
    answer_queries();
}
    
void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}
int main()
{
    
    speed();
    solve();
    return 0;
}
    
/**
2 1 2
3 1 1 3
5 1 3 4
3 3
3 4
    
    
    
    
4 2 4
3 1 1 10
9 2 2 4
7 2 5 7
4 1 8 10
5 3
5 6
5 9
1 10
    
2 1 3
1 1 1 4
1 1 2 6
1 3
1 5
1 7
    
1 1 1
100000000 1 1 1
1 1
    
    
    
*/

Compilation message

new_home.cpp: In function 'void answer_queries()':
new_home.cpp:346:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  346 |     for (int i = 1; i < dat.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:446:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<interval_ray>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  446 |             while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
      |                   ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 42 ms 211796 KB Output is correct
2 Correct 49 ms 211812 KB Output is correct
3 Correct 51 ms 211796 KB Output is correct
4 Correct 43 ms 211796 KB Output is correct
5 Correct 43 ms 211792 KB Output is correct
6 Correct 49 ms 212224 KB Output is correct
7 Correct 49 ms 212396 KB Output is correct
8 Correct 47 ms 212424 KB Output is correct
9 Correct 45 ms 212424 KB Output is correct
10 Correct 45 ms 212308 KB Output is correct
11 Correct 45 ms 212060 KB Output is correct
12 Correct 46 ms 212104 KB Output is correct
13 Correct 43 ms 212060 KB Output is correct
14 Correct 44 ms 212048 KB Output is correct
15 Correct 43 ms 212316 KB Output is correct
16 Correct 47 ms 212308 KB Output is correct
17 Correct 43 ms 212048 KB Output is correct
18 Correct 49 ms 212316 KB Output is correct
19 Correct 43 ms 212304 KB Output is correct
20 Correct 43 ms 212304 KB Output is correct
21 Correct 41 ms 211800 KB Output is correct
22 Correct 44 ms 212312 KB Output is correct
23 Correct 48 ms 212372 KB Output is correct
24 Correct 43 ms 212312 KB Output is correct
25 Correct 43 ms 212308 KB Output is correct
26 Correct 45 ms 212000 KB Output is correct
27 Correct 44 ms 212052 KB Output is correct
28 Correct 43 ms 212048 KB Output is correct
29 Correct 45 ms 212088 KB Output is correct
30 Correct 42 ms 211796 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 42 ms 211796 KB Output is correct
2 Correct 49 ms 211812 KB Output is correct
3 Correct 51 ms 211796 KB Output is correct
4 Correct 43 ms 211796 KB Output is correct
5 Correct 43 ms 211792 KB Output is correct
6 Correct 49 ms 212224 KB Output is correct
7 Correct 49 ms 212396 KB Output is correct
8 Correct 47 ms 212424 KB Output is correct
9 Correct 45 ms 212424 KB Output is correct
10 Correct 45 ms 212308 KB Output is correct
11 Correct 45 ms 212060 KB Output is correct
12 Correct 46 ms 212104 KB Output is correct
13 Correct 43 ms 212060 KB Output is correct
14 Correct 44 ms 212048 KB Output is correct
15 Correct 43 ms 212316 KB Output is correct
16 Correct 47 ms 212308 KB Output is correct
17 Correct 43 ms 212048 KB Output is correct
18 Correct 49 ms 212316 KB Output is correct
19 Correct 43 ms 212304 KB Output is correct
20 Correct 43 ms 212304 KB Output is correct
21 Correct 41 ms 211800 KB Output is correct
22 Correct 44 ms 212312 KB Output is correct
23 Correct 48 ms 212372 KB Output is correct
24 Correct 43 ms 212312 KB Output is correct
25 Correct 43 ms 212308 KB Output is correct
26 Correct 45 ms 212000 KB Output is correct
27 Correct 44 ms 212052 KB Output is correct
28 Correct 43 ms 212048 KB Output is correct
29 Correct 45 ms 212088 KB Output is correct
30 Correct 42 ms 211796 KB Output is correct
31 Correct 1151 ms 365804 KB Output is correct
32 Correct 124 ms 227964 KB Output is correct
33 Correct 1157 ms 367372 KB Output is correct
34 Correct 1266 ms 362960 KB Output is correct
35 Correct 1204 ms 365768 KB Output is correct
36 Correct 1393 ms 365204 KB Output is correct
37 Correct 969 ms 350616 KB Output is correct
38 Correct 1037 ms 351120 KB Output is correct
39 Correct 840 ms 325392 KB Output is correct
40 Correct 826 ms 330924 KB Output is correct
41 Correct 936 ms 312908 KB Output is correct
42 Correct 890 ms 314832 KB Output is correct
43 Correct 108 ms 225160 KB Output is correct
44 Correct 906 ms 310600 KB Output is correct
45 Correct 926 ms 301740 KB Output is correct
46 Correct 808 ms 284668 KB Output is correct
47 Correct 503 ms 277888 KB Output is correct
48 Correct 480 ms 274564 KB Output is correct
49 Correct 600 ms 289648 KB Output is correct
50 Correct 613 ms 306368 KB Output is correct
51 Correct 545 ms 282828 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2021 ms 901672 KB Output is correct
2 Correct 2087 ms 872624 KB Output is correct
3 Correct 1816 ms 908424 KB Output is correct
4 Correct 2110 ms 862368 KB Output is correct
5 Correct 1774 ms 862700 KB Output is correct
6 Correct 2039 ms 827288 KB Output is correct
7 Correct 1938 ms 867972 KB Output is correct
8 Correct 2113 ms 851832 KB Output is correct
9 Correct 2294 ms 869080 KB Output is correct
10 Correct 2318 ms 852360 KB Output is correct
11 Correct 1906 ms 866448 KB Output is correct
12 Correct 2233 ms 876748 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 5043 ms 958808 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 42 ms 211796 KB Output is correct
2 Correct 49 ms 211812 KB Output is correct
3 Correct 51 ms 211796 KB Output is correct
4 Correct 43 ms 211796 KB Output is correct
5 Correct 43 ms 211792 KB Output is correct
6 Correct 49 ms 212224 KB Output is correct
7 Correct 49 ms 212396 KB Output is correct
8 Correct 47 ms 212424 KB Output is correct
9 Correct 45 ms 212424 KB Output is correct
10 Correct 45 ms 212308 KB Output is correct
11 Correct 45 ms 212060 KB Output is correct
12 Correct 46 ms 212104 KB Output is correct
13 Correct 43 ms 212060 KB Output is correct
14 Correct 44 ms 212048 KB Output is correct
15 Correct 43 ms 212316 KB Output is correct
16 Correct 47 ms 212308 KB Output is correct
17 Correct 43 ms 212048 KB Output is correct
18 Correct 49 ms 212316 KB Output is correct
19 Correct 43 ms 212304 KB Output is correct
20 Correct 43 ms 212304 KB Output is correct
21 Correct 41 ms 211800 KB Output is correct
22 Correct 44 ms 212312 KB Output is correct
23 Correct 48 ms 212372 KB Output is correct
24 Correct 43 ms 212312 KB Output is correct
25 Correct 43 ms 212308 KB Output is correct
26 Correct 45 ms 212000 KB Output is correct
27 Correct 44 ms 212052 KB Output is correct
28 Correct 43 ms 212048 KB Output is correct
29 Correct 45 ms 212088 KB Output is correct
30 Correct 42 ms 211796 KB Output is correct
31 Correct 1151 ms 365804 KB Output is correct
32 Correct 124 ms 227964 KB Output is correct
33 Correct 1157 ms 367372 KB Output is correct
34 Correct 1266 ms 362960 KB Output is correct
35 Correct 1204 ms 365768 KB Output is correct
36 Correct 1393 ms 365204 KB Output is correct
37 Correct 969 ms 350616 KB Output is correct
38 Correct 1037 ms 351120 KB Output is correct
39 Correct 840 ms 325392 KB Output is correct
40 Correct 826 ms 330924 KB Output is correct
41 Correct 936 ms 312908 KB Output is correct
42 Correct 890 ms 314832 KB Output is correct
43 Correct 108 ms 225160 KB Output is correct
44 Correct 906 ms 310600 KB Output is correct
45 Correct 926 ms 301740 KB Output is correct
46 Correct 808 ms 284668 KB Output is correct
47 Correct 503 ms 277888 KB Output is correct
48 Correct 480 ms 274564 KB Output is correct
49 Correct 600 ms 289648 KB Output is correct
50 Correct 613 ms 306368 KB Output is correct
51 Correct 545 ms 282828 KB Output is correct
52 Correct 670 ms 348152 KB Output is correct
53 Correct 653 ms 350996 KB Output is correct
54 Correct 884 ms 352104 KB Output is correct
55 Correct 753 ms 331372 KB Output is correct
56 Correct 708 ms 335740 KB Output is correct
57 Correct 825 ms 319976 KB Output is correct
58 Correct 841 ms 332428 KB Output is correct
59 Correct 738 ms 338144 KB Output is correct
60 Correct 870 ms 323548 KB Output is correct
61 Correct 159 ms 249452 KB Output is correct
62 Correct 670 ms 358656 KB Output is correct
63 Correct 753 ms 346068 KB Output is correct
64 Correct 808 ms 346996 KB Output is correct
65 Correct 890 ms 341052 KB Output is correct
66 Correct 915 ms 323372 KB Output is correct
67 Correct 249 ms 248772 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 42 ms 211796 KB Output is correct
2 Correct 49 ms 211812 KB Output is correct
3 Correct 51 ms 211796 KB Output is correct
4 Correct 43 ms 211796 KB Output is correct
5 Correct 43 ms 211792 KB Output is correct
6 Correct 49 ms 212224 KB Output is correct
7 Correct 49 ms 212396 KB Output is correct
8 Correct 47 ms 212424 KB Output is correct
9 Correct 45 ms 212424 KB Output is correct
10 Correct 45 ms 212308 KB Output is correct
11 Correct 45 ms 212060 KB Output is correct
12 Correct 46 ms 212104 KB Output is correct
13 Correct 43 ms 212060 KB Output is correct
14 Correct 44 ms 212048 KB Output is correct
15 Correct 43 ms 212316 KB Output is correct
16 Correct 47 ms 212308 KB Output is correct
17 Correct 43 ms 212048 KB Output is correct
18 Correct 49 ms 212316 KB Output is correct
19 Correct 43 ms 212304 KB Output is correct
20 Correct 43 ms 212304 KB Output is correct
21 Correct 41 ms 211800 KB Output is correct
22 Correct 44 ms 212312 KB Output is correct
23 Correct 48 ms 212372 KB Output is correct
24 Correct 43 ms 212312 KB Output is correct
25 Correct 43 ms 212308 KB Output is correct
26 Correct 45 ms 212000 KB Output is correct
27 Correct 44 ms 212052 KB Output is correct
28 Correct 43 ms 212048 KB Output is correct
29 Correct 45 ms 212088 KB Output is correct
30 Correct 42 ms 211796 KB Output is correct
31 Correct 1151 ms 365804 KB Output is correct
32 Correct 124 ms 227964 KB Output is correct
33 Correct 1157 ms 367372 KB Output is correct
34 Correct 1266 ms 362960 KB Output is correct
35 Correct 1204 ms 365768 KB Output is correct
36 Correct 1393 ms 365204 KB Output is correct
37 Correct 969 ms 350616 KB Output is correct
38 Correct 1037 ms 351120 KB Output is correct
39 Correct 840 ms 325392 KB Output is correct
40 Correct 826 ms 330924 KB Output is correct
41 Correct 936 ms 312908 KB Output is correct
42 Correct 890 ms 314832 KB Output is correct
43 Correct 108 ms 225160 KB Output is correct
44 Correct 906 ms 310600 KB Output is correct
45 Correct 926 ms 301740 KB Output is correct
46 Correct 808 ms 284668 KB Output is correct
47 Correct 503 ms 277888 KB Output is correct
48 Correct 480 ms 274564 KB Output is correct
49 Correct 600 ms 289648 KB Output is correct
50 Correct 613 ms 306368 KB Output is correct
51 Correct 545 ms 282828 KB Output is correct
52 Correct 2021 ms 901672 KB Output is correct
53 Correct 2087 ms 872624 KB Output is correct
54 Correct 1816 ms 908424 KB Output is correct
55 Correct 2110 ms 862368 KB Output is correct
56 Correct 1774 ms 862700 KB Output is correct
57 Correct 2039 ms 827288 KB Output is correct
58 Correct 1938 ms 867972 KB Output is correct
59 Correct 2113 ms 851832 KB Output is correct
60 Correct 2294 ms 869080 KB Output is correct
61 Correct 2318 ms 852360 KB Output is correct
62 Correct 1906 ms 866448 KB Output is correct
63 Correct 2233 ms 876748 KB Output is correct
64 Execution timed out 5043 ms 958808 KB Time limit exceeded
65 Halted 0 ms 0 KB -