Submission #864947

# Submission time Handle Problem Language Result Execution time Memory
864947 2023-10-23T19:03:02 Z danikoynov New Home (APIO18_new_home) C++14
57 / 100
5000 ms 965032 KB
#include<bits/stdc++.h>
#pragma __attribute__ ((always_inline)) inline
#define endl '\n'
    
using namespace std;
typedef long long ll;
    
const int maxn = 6e5 + 10, inf = 1e9;
    
struct store
{
    int x, t, a, b;
}s[maxn];
    
struct query
{
    int l, y, idx;
}task[maxn];
    
int n, k, q;
int readInt () {
    bool minus = false;
    int result = 0;
    char ch;
    ch = getchar();
    while (true) {
        if (ch == '-') break;
        if (ch >= '0' && ch <= '9') break;
        ch = getchar();
    }
    if (ch == '-') minus = true; else result = ch-'0';
    while (true) {
        ch = getchar();
        if (ch < '0' || ch > '9') break;
        result = result*10 + (ch - '0');
    }
    if (minus)
        return -result;
    else
        return result;
}
void input()
{
    n = readInt();
    k = readInt();
    q = readInt();
    ///cin >> n >> k >> q;
    for (int i = 1; i <= n; i ++)
    {
        s[i].x = readInt();
        s[i].t = readInt();
        s[i].a = readInt();
        s[i].b = readInt();
        ///        cin >> s[i].x >> s[i].t >> s[i].a >> s[i].b;
    }
    
    for (int i = 1; i <= q; i ++)
    {
            task[i].l = readInt();
            task[i].y = readInt();
            task[i].idx = i;
        ///cin >> task[i].l >> task[i].y, task[i].idx = i;
    }
}
    
unordered_map < int, int > rev;
int dif, back_to[2 * maxn];
    


    
bool cmp_query(query &t1, query &t2)
{
    return t1.l < t2.l;
}
    
struct event
{
    int type, cor, add, arrive;
    
    event(int _type, int _cor, int _add, int _arrive)
    {
        type = _type;
        cor = _cor;
        add = _add;
        arrive = _arrive;
    }
};
    
bool cmp_event(event &e1, event &e2)
{
    if (e1.arrive != e2.arrive)
        return e1.arrive < e2.arrive;
    
    if (e1.add != e2.add)
        return e1.add < e2.add;
    
    return e1.cor < e2.cor; /// could have dublicates
}
    
    
    
multiset < int > act[maxn];
    
struct interval_ray
{
    int s, e;
    pair < int, int > ray;
    
    interval_ray(int _s, int _e, pair < int, int > _ray)
    {
        s = _s;
        e = _e;
        ray = _ray;
    }

    interval_ray(int &_s, int &_e, pair < int, int > &_ray)
    {
        s = _s;
        e = _e;
        ray = _ray;
    }
};
    
struct hash_pair {
    template <class T1, class T2>
    size_t operator()(const pair<T1, T2>& p) const
    {
        auto hash1 = hash<T1>{}(p.first);
        auto hash2 = hash<T2>{}(p.second);
 
        if (hash1 != hash2) {
            return hash1 ^ hash2;              
        }
         
        // If hash1 == hash2, their XOR is zero.
          return hash1;
    }
};
 
vector < interval_ray > seg_left, seg_right;
    
// unordered_map <pair<int, int>, int, hash_pair> 
map <pair<int, int>, int>ray_right[maxn], ray_left[maxn];
vector < int > dat;

void make_left_segment(const int &start, const int &finish, const int &timer, const int &type)
{
    ///cout << "left " << start << " " << finish << " " << timer << endl;
    seg_left.push_back(interval_ray(ray_left[type][{start, finish}], timer - 1, {start, finish}));
    ray_left[type][{start, finish}] = 0;
}
    
void make_right_segment(const int &start, const int &finish, const int &timer, const int &type)
{
    seg_right.push_back(interval_ray(ray_right[type][{start, finish}], timer - 1, {start, finish}));
    ray_right[type][{start, finish}] = 0;
}
    
void add_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].upper_bound(cor);
    int aft = *it;
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        
        make_right_segment(-inf, inf, timer, type);
        ray_left[type][{cor, -inf}] = timer;
        ray_right[type][{cor, +inf}] = timer;
    }
    else
    if (bef == - inf)
    {
        make_left_segment(aft, -inf, timer, type);
        int mid = (cor + aft) / 2;
        ray_right[type][{cor, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
        ray_left[type][{cor, -inf}] = timer;
    }
    else
    if (aft == inf)
    {
        make_right_segment(bef, inf, timer, type);
        int mid = (bef + cor) / 2;
        ray_left[type][{cor, mid + 1}] = timer;
        ray_right[type][{bef, mid}] = timer;
        ray_right[type][{cor, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        make_right_segment(bef, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
        int mid_left = (bef + cor) / 2;
        ray_right[type][{bef, mid_left}] = timer;
        ray_left[type][{cor, mid_left + 1}] = timer;
        int mid_right = (cor + aft) / 2;
        ray_right[type][{cor, mid_right}] = timer;
        ray_left[type][{aft, mid_right + 1}] = timer;
    }
    
    act[type].insert(cor);
}
    
    
void remove_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].find(cor);
    int aft = *next(it);
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        ///cout << "reverse " << timer << endl;
    
        make_left_segment(cor, -inf, timer, type);
        make_right_segment(cor, +inf, timer, type);
        ray_right[type][{-inf, inf}] = timer;
    
    }
    else
    if (bef == -inf)
    {
    
        ///cout << "step " << timer << endl;
        make_left_segment(cor, -inf, timer, type);
        int mid = (cor + aft) / 2;
        make_right_segment(cor, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
                ray_left[type][{aft, -inf}] = timer;
    
    
    }
    else
    if (aft == inf)
    {
    
        make_right_segment(cor, inf, timer, type);
        int mid = (bef + cor) / 2;
        make_left_segment(cor, mid + 1, timer, type);
        make_right_segment(bef, mid, timer, type);
                ray_right[type][{bef, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        ///assert((ray_right[type][{bef, mid}]) == 0);
        ///assert((ray_left[type][{aft, mid + 1}]) == 0);
    
        int mid_left = (bef + cor) / 2;
        make_right_segment(bef, mid_left, timer, type);
        make_left_segment(cor, mid_left + 1, timer, type);
        int mid_right = (aft + cor) / 2;
        make_right_segment(cor, mid_right, timer, type);
        make_left_segment(aft, mid_right + 1, timer, type);
    
                ray_right[type][{bef, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
    
    }
    
    act[type].erase(it);
}
    
int ans[maxn];
    
vector < interval_ray > tree_left[maxn * 4], tree_right[maxn * 4];
int pt_lf[4 * maxn], bs_lf[4 * maxn];
int pt_rf[4 * maxn], bs_rf[4 * maxn];
    
bool cmp_ray_second(interval_ray r1, interval_ray r2)
{
    return r1.ray.second < r2.ray.second;
}
void update_range(int root, int left, int right, int qleft, int qright, interval_ray &ray, int type)
{
    if (left > qright || right < qleft)
        return;
    
    if (left >= qleft && right <= qright)
    {
        if (type == -1)
            tree_left[root].push_back(ray);
        else
            tree_right[root].push_back(ray);
        return;
    }
    
    int mid = (left + right) / 2;
    update_range(root * 2, left, mid, qleft, qright, ray, type);
    update_range(root * 2 + 1, mid + 1, right, qleft, qright, ray, type);
    
}
    
unordered_map < int, int > event_times;
    
void answer_queries()
{
    sort(task + 1, task + q + 1, cmp_query);
    
    vector < event > events;
    for (int i = 1; i <= n; i ++)
    {
        events.push_back(event(s[i].t, s[i].x, 1, s[i].a));
        events.push_back(event(s[i].t, s[i].x, -1, s[i].b + 1));
    }
    
    sort(events.begin(), events.end(), cmp_event);
    
    for (int i = 1; i <= k; i ++)
    {
        act[i].insert(-inf);
        act[i].insert(inf);
        ray_right[i][{-inf, inf}] = 1;
    }
    
    
    int cnt = 0;
    dat.push_back(1);
    dat.push_back(0);
    
    for (event cur : events)
    {
        ///dat.push_back(cur.arrive - 1);
        dat.push_back(cur.arrive);
        ///cout << "event " << cur.arrive << " " << cur.add << " " << cur.cor << " " << cur.type << endl;
        if (cur.add == 1)
            add_event(cur.type, cur.cor, cur.arrive);
        else
            remove_event(cur.type, cur.cor, cur.arrive);
    }
    
    dat.push_back(inf - 1);
    dat.push_back(inf);
    
    for (int i = 1; i <= q; i ++)
        dat.push_back(task[i].y);
    
    sort(dat.begin(), dat.end());
    cnt ++;
    event_times[dat[0]] = cnt;
    for (int i = 1; i < dat.size(); i ++)
    {
        if (dat[i] == dat[i - 1])
            continue;
        cnt ++;
        event_times[dat[i]] = cnt;
    }
    
    map < pair < int, int >, int > :: iterator it;
    for (int i = 1; i <= k; i ++)
        for (it = ray_right[i].begin(); it != ray_right[i].end(); it ++)
        {
            ///cout << it -> first.first << " :: " << it -> first.second << " " << it -> second << endl;
            if (it -> second != 0)
                make_right_segment(it -> first.first, it -> first.second, inf, i);
        }
    
    
    for (int i = 1; i <= k; i ++)
        for (it = ray_left[i].begin(); it != ray_left[i].end(); it ++)
        {
            if (it -> second != 0)
            {
            ///cout << "here " << endl;
                make_left_segment(it -> first.first, it -> first.second, inf, i);
            }
        }
    
    sort(seg_right.begin(), seg_right.end(), cmp_ray_second);
    sort(seg_left.begin(), seg_left.end(), cmp_ray_second);
    for (interval_ray cur : seg_left)
    {
        //assert(event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, -1);
    ///    cout << "left ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }
    
    for (interval_ray cur : seg_right)
    {
        //assert(event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, 1);
        ///cout << "right ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }
    
    
    for (int i = 1; i <= 4 * cnt; i ++)
    {
        pt_rf[i] = (int)(tree_right[i].size()) - 1;
        bs_rf[i] = inf;
    
        pt_lf[i] = 0;
        bs_lf[i] = -inf;
        ///sort(tree_right[i].begin(), tree_right[i].end(), cmp_ray_second);
        ///sort(tree_left[i].begin(), tree_left[i].end(), cmp_ray_second);
    }
    
    for (int i = q; i > 0; i --)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
    
        while(true)
        {
    
            while(pt_rf[root] >= 0 && task[i].l <= tree_right[root][pt_rf[root]].ray.second)
            {
                bs_rf[root] = min(bs_rf[root], tree_right[root][pt_rf[root]].ray.first);
                pt_rf[root] --;
            }
            longest = max(longest, task[i].l - bs_rf[root]);
    
    
            if (left == right)
                break;
    
            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }
    
        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
    
    for (int i = 1; i <= q; i ++)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
        while(true)
        {
            ///cout << "step " << root << " " << left << " " << right << endl;
            while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
            {
                bs_lf[root] = max(bs_lf[root], tree_left[root][pt_lf[root]].ray.first);
                pt_lf[root] ++;
            }
            longest = max(longest, bs_lf[root] - task[i].l);
            /**for (interval_ray cur : tree_left[root])
            {
                if (task[i].l >= cur.ray.second)
                    longest = max(longest, cur.ray.first - task[i].l);
            }*/
    
    
            if (left == right)
                break;
    
            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }
    
        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
    
    for (int i = 1; i <= q; i ++)
    {
        if (ans[i] > 2e8)
            cout << -1 << endl;
        else
            cout << ans[i] << endl;
    }
}
void solve()
{
    input();
    ///compress_data();
    answer_queries();
}
    
void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}
int main()
{
    
    speed();
    solve();
    return 0;
}
    
/**
2 1 2
3 1 1 3
5 1 3 4
3 3
3 4
    
    
    
    
4 2 4
3 1 1 10
9 2 2 4
7 2 5 7
4 1 8 10
5 3
5 6
5 9
1 10
    
2 1 3
1 1 1 4
1 1 2 6
1 3
1 5
1 7
    
1 1 1
100000000 1 1 1
1 1
    
    
    
*/

Compilation message

new_home.cpp:2: warning: ignoring '#pragma __attribute__ ' [-Wunknown-pragmas]
    2 | #pragma __attribute__ ((always_inline)) inline
      | 
new_home.cpp: In function 'void answer_queries()':
new_home.cpp:344:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  344 |     for (int i = 1; i < dat.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:444:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<interval_ray>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  444 |             while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
      |                   ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 41 ms 211796 KB Output is correct
2 Correct 42 ms 211796 KB Output is correct
3 Correct 42 ms 211792 KB Output is correct
4 Correct 41 ms 211792 KB Output is correct
5 Correct 45 ms 211988 KB Output is correct
6 Correct 45 ms 212372 KB Output is correct
7 Correct 43 ms 212180 KB Output is correct
8 Correct 46 ms 212308 KB Output is correct
9 Correct 46 ms 212304 KB Output is correct
10 Correct 51 ms 212440 KB Output is correct
11 Correct 43 ms 212044 KB Output is correct
12 Correct 45 ms 212064 KB Output is correct
13 Correct 44 ms 211928 KB Output is correct
14 Correct 43 ms 211976 KB Output is correct
15 Correct 42 ms 212312 KB Output is correct
16 Correct 43 ms 212308 KB Output is correct
17 Correct 44 ms 212316 KB Output is correct
18 Correct 44 ms 212192 KB Output is correct
19 Correct 43 ms 212304 KB Output is correct
20 Correct 43 ms 212316 KB Output is correct
21 Correct 41 ms 211848 KB Output is correct
22 Correct 44 ms 212420 KB Output is correct
23 Correct 43 ms 212336 KB Output is correct
24 Correct 44 ms 212560 KB Output is correct
25 Correct 44 ms 212316 KB Output is correct
26 Correct 42 ms 212092 KB Output is correct
27 Correct 43 ms 211912 KB Output is correct
28 Correct 43 ms 212060 KB Output is correct
29 Correct 43 ms 212052 KB Output is correct
30 Correct 43 ms 212000 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 41 ms 211796 KB Output is correct
2 Correct 42 ms 211796 KB Output is correct
3 Correct 42 ms 211792 KB Output is correct
4 Correct 41 ms 211792 KB Output is correct
5 Correct 45 ms 211988 KB Output is correct
6 Correct 45 ms 212372 KB Output is correct
7 Correct 43 ms 212180 KB Output is correct
8 Correct 46 ms 212308 KB Output is correct
9 Correct 46 ms 212304 KB Output is correct
10 Correct 51 ms 212440 KB Output is correct
11 Correct 43 ms 212044 KB Output is correct
12 Correct 45 ms 212064 KB Output is correct
13 Correct 44 ms 211928 KB Output is correct
14 Correct 43 ms 211976 KB Output is correct
15 Correct 42 ms 212312 KB Output is correct
16 Correct 43 ms 212308 KB Output is correct
17 Correct 44 ms 212316 KB Output is correct
18 Correct 44 ms 212192 KB Output is correct
19 Correct 43 ms 212304 KB Output is correct
20 Correct 43 ms 212316 KB Output is correct
21 Correct 41 ms 211848 KB Output is correct
22 Correct 44 ms 212420 KB Output is correct
23 Correct 43 ms 212336 KB Output is correct
24 Correct 44 ms 212560 KB Output is correct
25 Correct 44 ms 212316 KB Output is correct
26 Correct 42 ms 212092 KB Output is correct
27 Correct 43 ms 211912 KB Output is correct
28 Correct 43 ms 212060 KB Output is correct
29 Correct 43 ms 212052 KB Output is correct
30 Correct 43 ms 212000 KB Output is correct
31 Correct 1041 ms 363340 KB Output is correct
32 Correct 122 ms 227960 KB Output is correct
33 Correct 1052 ms 365980 KB Output is correct
34 Correct 998 ms 363296 KB Output is correct
35 Correct 1043 ms 366264 KB Output is correct
36 Correct 1108 ms 365248 KB Output is correct
37 Correct 785 ms 350652 KB Output is correct
38 Correct 796 ms 350900 KB Output is correct
39 Correct 665 ms 323996 KB Output is correct
40 Correct 692 ms 332384 KB Output is correct
41 Correct 760 ms 312956 KB Output is correct
42 Correct 753 ms 315124 KB Output is correct
43 Correct 94 ms 225092 KB Output is correct
44 Correct 737 ms 310956 KB Output is correct
45 Correct 729 ms 301832 KB Output is correct
46 Correct 625 ms 284568 KB Output is correct
47 Correct 426 ms 277880 KB Output is correct
48 Correct 450 ms 274684 KB Output is correct
49 Correct 488 ms 289700 KB Output is correct
50 Correct 554 ms 306384 KB Output is correct
51 Correct 516 ms 282904 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1993 ms 856820 KB Output is correct
2 Correct 1976 ms 873588 KB Output is correct
3 Correct 1731 ms 901560 KB Output is correct
4 Correct 1993 ms 871880 KB Output is correct
5 Correct 1742 ms 872404 KB Output is correct
6 Correct 1886 ms 954384 KB Output is correct
7 Correct 1751 ms 911404 KB Output is correct
8 Correct 1938 ms 867932 KB Output is correct
9 Correct 2087 ms 864464 KB Output is correct
10 Correct 2249 ms 965032 KB Output is correct
11 Correct 1808 ms 871520 KB Output is correct
12 Correct 2209 ms 846012 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 5088 ms 944356 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 41 ms 211796 KB Output is correct
2 Correct 42 ms 211796 KB Output is correct
3 Correct 42 ms 211792 KB Output is correct
4 Correct 41 ms 211792 KB Output is correct
5 Correct 45 ms 211988 KB Output is correct
6 Correct 45 ms 212372 KB Output is correct
7 Correct 43 ms 212180 KB Output is correct
8 Correct 46 ms 212308 KB Output is correct
9 Correct 46 ms 212304 KB Output is correct
10 Correct 51 ms 212440 KB Output is correct
11 Correct 43 ms 212044 KB Output is correct
12 Correct 45 ms 212064 KB Output is correct
13 Correct 44 ms 211928 KB Output is correct
14 Correct 43 ms 211976 KB Output is correct
15 Correct 42 ms 212312 KB Output is correct
16 Correct 43 ms 212308 KB Output is correct
17 Correct 44 ms 212316 KB Output is correct
18 Correct 44 ms 212192 KB Output is correct
19 Correct 43 ms 212304 KB Output is correct
20 Correct 43 ms 212316 KB Output is correct
21 Correct 41 ms 211848 KB Output is correct
22 Correct 44 ms 212420 KB Output is correct
23 Correct 43 ms 212336 KB Output is correct
24 Correct 44 ms 212560 KB Output is correct
25 Correct 44 ms 212316 KB Output is correct
26 Correct 42 ms 212092 KB Output is correct
27 Correct 43 ms 211912 KB Output is correct
28 Correct 43 ms 212060 KB Output is correct
29 Correct 43 ms 212052 KB Output is correct
30 Correct 43 ms 212000 KB Output is correct
31 Correct 1041 ms 363340 KB Output is correct
32 Correct 122 ms 227960 KB Output is correct
33 Correct 1052 ms 365980 KB Output is correct
34 Correct 998 ms 363296 KB Output is correct
35 Correct 1043 ms 366264 KB Output is correct
36 Correct 1108 ms 365248 KB Output is correct
37 Correct 785 ms 350652 KB Output is correct
38 Correct 796 ms 350900 KB Output is correct
39 Correct 665 ms 323996 KB Output is correct
40 Correct 692 ms 332384 KB Output is correct
41 Correct 760 ms 312956 KB Output is correct
42 Correct 753 ms 315124 KB Output is correct
43 Correct 94 ms 225092 KB Output is correct
44 Correct 737 ms 310956 KB Output is correct
45 Correct 729 ms 301832 KB Output is correct
46 Correct 625 ms 284568 KB Output is correct
47 Correct 426 ms 277880 KB Output is correct
48 Correct 450 ms 274684 KB Output is correct
49 Correct 488 ms 289700 KB Output is correct
50 Correct 554 ms 306384 KB Output is correct
51 Correct 516 ms 282904 KB Output is correct
52 Correct 765 ms 345576 KB Output is correct
53 Correct 714 ms 348532 KB Output is correct
54 Correct 936 ms 348780 KB Output is correct
55 Correct 900 ms 327124 KB Output is correct
56 Correct 810 ms 332916 KB Output is correct
57 Correct 952 ms 316464 KB Output is correct
58 Correct 946 ms 329880 KB Output is correct
59 Correct 861 ms 336544 KB Output is correct
60 Correct 931 ms 320204 KB Output is correct
61 Correct 174 ms 247488 KB Output is correct
62 Correct 794 ms 356812 KB Output is correct
63 Correct 838 ms 342620 KB Output is correct
64 Correct 873 ms 343900 KB Output is correct
65 Correct 951 ms 339120 KB Output is correct
66 Correct 966 ms 320380 KB Output is correct
67 Correct 294 ms 248180 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 41 ms 211796 KB Output is correct
2 Correct 42 ms 211796 KB Output is correct
3 Correct 42 ms 211792 KB Output is correct
4 Correct 41 ms 211792 KB Output is correct
5 Correct 45 ms 211988 KB Output is correct
6 Correct 45 ms 212372 KB Output is correct
7 Correct 43 ms 212180 KB Output is correct
8 Correct 46 ms 212308 KB Output is correct
9 Correct 46 ms 212304 KB Output is correct
10 Correct 51 ms 212440 KB Output is correct
11 Correct 43 ms 212044 KB Output is correct
12 Correct 45 ms 212064 KB Output is correct
13 Correct 44 ms 211928 KB Output is correct
14 Correct 43 ms 211976 KB Output is correct
15 Correct 42 ms 212312 KB Output is correct
16 Correct 43 ms 212308 KB Output is correct
17 Correct 44 ms 212316 KB Output is correct
18 Correct 44 ms 212192 KB Output is correct
19 Correct 43 ms 212304 KB Output is correct
20 Correct 43 ms 212316 KB Output is correct
21 Correct 41 ms 211848 KB Output is correct
22 Correct 44 ms 212420 KB Output is correct
23 Correct 43 ms 212336 KB Output is correct
24 Correct 44 ms 212560 KB Output is correct
25 Correct 44 ms 212316 KB Output is correct
26 Correct 42 ms 212092 KB Output is correct
27 Correct 43 ms 211912 KB Output is correct
28 Correct 43 ms 212060 KB Output is correct
29 Correct 43 ms 212052 KB Output is correct
30 Correct 43 ms 212000 KB Output is correct
31 Correct 1041 ms 363340 KB Output is correct
32 Correct 122 ms 227960 KB Output is correct
33 Correct 1052 ms 365980 KB Output is correct
34 Correct 998 ms 363296 KB Output is correct
35 Correct 1043 ms 366264 KB Output is correct
36 Correct 1108 ms 365248 KB Output is correct
37 Correct 785 ms 350652 KB Output is correct
38 Correct 796 ms 350900 KB Output is correct
39 Correct 665 ms 323996 KB Output is correct
40 Correct 692 ms 332384 KB Output is correct
41 Correct 760 ms 312956 KB Output is correct
42 Correct 753 ms 315124 KB Output is correct
43 Correct 94 ms 225092 KB Output is correct
44 Correct 737 ms 310956 KB Output is correct
45 Correct 729 ms 301832 KB Output is correct
46 Correct 625 ms 284568 KB Output is correct
47 Correct 426 ms 277880 KB Output is correct
48 Correct 450 ms 274684 KB Output is correct
49 Correct 488 ms 289700 KB Output is correct
50 Correct 554 ms 306384 KB Output is correct
51 Correct 516 ms 282904 KB Output is correct
52 Correct 1993 ms 856820 KB Output is correct
53 Correct 1976 ms 873588 KB Output is correct
54 Correct 1731 ms 901560 KB Output is correct
55 Correct 1993 ms 871880 KB Output is correct
56 Correct 1742 ms 872404 KB Output is correct
57 Correct 1886 ms 954384 KB Output is correct
58 Correct 1751 ms 911404 KB Output is correct
59 Correct 1938 ms 867932 KB Output is correct
60 Correct 2087 ms 864464 KB Output is correct
61 Correct 2249 ms 965032 KB Output is correct
62 Correct 1808 ms 871520 KB Output is correct
63 Correct 2209 ms 846012 KB Output is correct
64 Execution timed out 5088 ms 944356 KB Time limit exceeded
65 Halted 0 ms 0 KB -