Submission #864913

# Submission time Handle Problem Language Result Execution time Memory
864913 2023-10-23T17:53:42 Z danikoynov New Home (APIO18_new_home) C++14
57 / 100
2398 ms 823588 KB
#include<bits/stdc++.h>
#define endl '\n'
    
using namespace std;
typedef long long ll;
    
const int maxn = 3e5 + 10, inf = 1e9;
    
struct store
{
    int x, t, a, b;
}s[maxn];
    
struct query
{
    int l, y, idx;
}task[maxn];
    
int n, k, q;
    
void input()
{
    cin >> n >> k >> q;
    for (int i = 1; i <= n; i ++)
        cin >> s[i].x >> s[i].t >> s[i].a >> s[i].b;
    
    for (int i = 1; i <= q; i ++)
        cin >> task[i].l >> task[i].y, task[i].idx = i;
}
    
unordered_map < int, int > rev;
int dif, back_to[2 * maxn];
    
int get_mid(int left, int right)
{
    if (left == right)
        return rev[left];
    
    int lf = rev[left], rf = rev[right];
    while(lf <= rf)
    {
        int mf = (lf + rf) / 2;
        if (abs(left - back_to[mf]) <= abs(right - back_to[mf]))
            lf = mf + 1;
        else
            rf = mf - 1;
    }
    
    return rf;
}
void compress_data()
{
    vector < int > cor;
    for (int i = 1; i <= n; i ++)
        cor.push_back(s[i].x);
    for (int i = 1; i <= q; i ++)
        cor.push_back(task[i].l);
    
    sort(cor.begin(), cor.end());
    int sz = cor.size();
    
    for (int i = 0; i < cor.size(); i ++)
    {
        if (i != 0 || cor[i - 1] != cor[i])
        {
            dif ++;
            rev[cor[i]] = dif;
            back_to[dif] = cor[i];
        }
    }
}
    
    
bool cmp_query(query t1, query t2)
{
    return t1.l < t2.l;
}
    
struct event
{
    int type, cor, add, arrive;
    
    event(int _type, int _cor, int _add, int _arrive)
    {
        type = _type;
        cor = _cor;
        add = _add;
        arrive = _arrive;
    }
};
    
bool cmp_event(event e1, event e2)
{
    if (e1.arrive != e2.arrive)
        return e1.arrive < e2.arrive;
    
    if (e1.add != e2.add)
        return e1.add < e2.add;
    
    return e1.cor < e2.cor; /// could have dublicates
}
    
    
    
multiset < int > act[maxn];
    
struct interval_ray
{
    int s, e;
    pair < int, int > ray;
    
    interval_ray(int _s, int _e, pair < int, int > _ray)
    {
        s = _s;
        e = _e;
        ray = _ray;
    }
};
    
vector < interval_ray > seg_left, seg_right;
    
map < pair < int, int >, int > ray_right[maxn], ray_left[maxn];
vector < int > dat;
void make_left_segment(int start, int finish, int timer, int type)
{
    ///cout << "left " << start << " " << finish << " " << timer << endl;
    seg_left.push_back(interval_ray(ray_left[type][{start, finish}], timer - 1, {start, finish}));
    ray_left[type][{start, finish}] = 0;
}
    
void make_right_segment(int start, int finish, int timer, int type)
{

    seg_right.push_back(interval_ray(ray_right[type][{start, finish}], timer - 1, {start, finish}));
    ray_right[type][{start, finish}] = 0;
}
    
void add_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].upper_bound(cor);
    int aft = *it;
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        
        make_right_segment(-inf, inf, timer, type);
        ray_left[type][{cor, -inf}] = timer;
        ray_right[type][{cor, +inf}] = timer;
    }
    else
    if (bef == - inf)
    {
        make_left_segment(aft, -inf, timer, type);
        int mid = (cor + aft) / 2;
        ray_right[type][{cor, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
        ray_left[type][{cor, -inf}] = timer;
    }
    else
    if (aft == inf)
    {
        make_right_segment(bef, inf, timer, type);
        int mid = (bef + cor) / 2;
        ray_left[type][{cor, mid + 1}] = timer;
        ray_right[type][{bef, mid}] = timer;
        ray_right[type][{cor, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        make_right_segment(bef, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
        int mid_left = (bef + cor) / 2;
        ray_right[type][{bef, mid_left}] = timer;
        ray_left[type][{cor, mid_left + 1}] = timer;
        int mid_right = (cor + aft) / 2;
        ray_right[type][{cor, mid_right}] = timer;
        ray_left[type][{aft, mid_right + 1}] = timer;
    }
    
    act[type].insert(cor);
}
    
    
void remove_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].find(cor);
    int aft = *next(it);
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        ///cout << "reverse " << timer << endl;
    
        make_left_segment(cor, -inf, timer, type);
        make_right_segment(cor, +inf, timer, type);
        ray_right[type][{-inf, inf}] = timer;
    
    }
    else
    if (bef == -inf)
    {
    
        ///cout << "step " << timer << endl;
        make_left_segment(cor, -inf, timer, type);
        int mid = (cor + aft) / 2;
        make_right_segment(cor, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
                ray_left[type][{aft, -inf}] = timer;
    
    
    }
    else
    if (aft == inf)
    {
    
        make_right_segment(cor, inf, timer, type);
        int mid = (bef + cor) / 2;
        make_left_segment(cor, mid + 1, timer, type);
        make_right_segment(bef, mid, timer, type);
                ray_right[type][{bef, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        ///assert((ray_right[type][{bef, mid}]) == 0);
        ///assert((ray_left[type][{aft, mid + 1}]) == 0);
    
        int mid_left = (bef + cor) / 2;
        make_right_segment(bef, mid_left, timer, type);
        make_left_segment(cor, mid_left + 1, timer, type);
        int mid_right = (aft + cor) / 2;
        make_right_segment(cor, mid_right, timer, type);
        make_left_segment(aft, mid_right + 1, timer, type);
    
                ray_right[type][{bef, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
    
    }
    
    act[type].erase(it);
}
    
int ans[maxn];
    
vector < interval_ray > tree_left[maxn * 4], tree_right[maxn * 4];
int pt_lf[4 * maxn], bs_lf[4 * maxn];
int pt_rf[4 * maxn], bs_rf[4 * maxn];
    
bool cmp_ray_second(interval_ray r1, interval_ray r2)
{
    return r1.ray.second < r2.ray.second;
}
void update_range(int root, int left, int right, int qleft, int qright, interval_ray &ray, int type)
{
    if (left > qright || right < qleft)
        return;
    
    if (left >= qleft && right <= qright)
    {
        if (type == -1)
            tree_left[root].push_back(ray);
        else
            tree_right[root].push_back(ray);
        return;
    }
    
    int mid = (left + right) / 2;
    update_range(root * 2, left, mid, qleft, qright, ray, type);
    update_range(root * 2 + 1, mid + 1, right, qleft, qright, ray, type);
    
}
    
unordered_map < int, int > event_times;
    
void answer_queries()
{
    sort(task + 1, task + q + 1, cmp_query);
    
    vector < event > events;
    for (int i = 1; i <= n; i ++)
    {
        events.push_back(event(s[i].t, s[i].x, 1, s[i].a));
        events.push_back(event(s[i].t, s[i].x, -1, s[i].b + 1));
    }
    
    sort(events.begin(), events.end(), cmp_event);
    
    for (int i = 1; i <= k; i ++)
    {
        act[i].insert(-inf);
        act[i].insert(inf);
        ray_right[i][{-inf, inf}] = 1;
    }
    
    
    int cnt = 0;
    dat.push_back(1);
    dat.push_back(0);
    
    for (event cur : events)
    {
        ///dat.push_back(cur.arrive - 1);
        dat.push_back(cur.arrive);
        ///cout << "event " << cur.arrive << " " << cur.add << " " << cur.cor << " " << cur.type << endl;
        if (cur.add == 1)
            add_event(cur.type, cur.cor, cur.arrive);
        else
            remove_event(cur.type, cur.cor, cur.arrive);
    }
    
    dat.push_back(inf - 1);
    dat.push_back(inf);
    
    for (int i = 1; i <= q; i ++)
        dat.push_back(task[i].y);
    
    sort(dat.begin(), dat.end());
    cnt ++;
    event_times[dat[0]] = cnt;
    for (int i = 1; i < dat.size(); i ++)
    {
        if (dat[i] == dat[i - 1])
            continue;
        cnt ++;
        event_times[dat[i]] = cnt;
    }
    
    map < pair < int, int >, int > :: iterator it;
    for (int i = 1; i <= k; i ++)
        for (it = ray_right[i].begin(); it != ray_right[i].end(); it ++)
        {
            ///cout << it -> first.first << " :: " << it -> first.second << " " << it -> second << endl;
            if (it -> second != 0)
                make_right_segment(it -> first.first, it -> first.second, inf, i);
        }
    
    
    for (int i = 1; i <= k; i ++)
        for (it = ray_left[i].begin(); it != ray_left[i].end(); it ++)
        {
            if (it -> second != 0)
            {
            ///cout << "here " << endl;
                make_left_segment(it -> first.first, it -> first.second, inf, i);
            }
        }
    
    sort(seg_right.begin(), seg_right.end(), cmp_ray_second);
    sort(seg_left.begin(), seg_left.end(), cmp_ray_second);
    for (interval_ray cur : seg_left)
    {
        //assert(event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, -1);
    ///    cout << "left ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }
    
    for (interval_ray cur : seg_right)
    {
        //assert(event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, 1);
        ///cout << "right ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }
    
    
    for (int i = 1; i <= 4 * cnt; i ++)
    {
        pt_rf[i] = (int)(tree_right[i].size()) - 1;
        bs_rf[i] = inf;
    
        pt_lf[i] = 0;
        bs_lf[i] = -inf;
        ///sort(tree_right[i].begin(), tree_right[i].end(), cmp_ray_second);
        ///sort(tree_left[i].begin(), tree_left[i].end(), cmp_ray_second);
    }
    
    for (int i = q; i > 0; i --)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
    
        while(true)
        {
    
            while(pt_rf[root] >= 0 && task[i].l <= tree_right[root][pt_rf[root]].ray.second)
            {
                bs_rf[root] = min(bs_rf[root], tree_right[root][pt_rf[root]].ray.first);
                pt_rf[root] --;
            }
            longest = max(longest, task[i].l - bs_rf[root]);
    
    
            if (left == right)
                break;
    
            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }
    
        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
    
    for (int i = 1; i <= q; i ++)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
        while(true)
        {
            ///cout << "step " << root << " " << left << " " << right << endl;
            while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
            {
                bs_lf[root] = max(bs_lf[root], tree_left[root][pt_lf[root]].ray.first);
                pt_lf[root] ++;
            }
            longest = max(longest, bs_lf[root] - task[i].l);
            /**for (interval_ray cur : tree_left[root])
            {
                if (task[i].l >= cur.ray.second)
                    longest = max(longest, cur.ray.first - task[i].l);
            }*/
    
    
            if (left == right)
                break;
    
            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }
    
        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
    
    for (int i = 1; i <= q; i ++)
    {
        if (ans[i] > 2e8)
            cout << -1 << endl;
        else
            cout << ans[i] << endl;
    }
}
void solve()
{
    input();
    compress_data();
    answer_queries();
}
    
void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}
int main()
{
    speed();
    solve();
    return 0;
}
    
/**
2 1 2
3 1 1 3
5 1 3 4
3 3
3 4
    
    
    
    
4 2 4
3 1 1 10
9 2 2 4
7 2 5 7
4 1 8 10
5 3
5 6
5 9
1 10
    
2 1 3
1 1 1 4
1 1 2 6
1 3
1 5
1 7
    
1 1 1
100000000 1 1 1
1 1
    
    
    
*/

Compilation message

new_home.cpp: In function 'void compress_data()':
new_home.cpp:62:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   62 |     for (int i = 0; i < cor.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:60:9: warning: unused variable 'sz' [-Wunused-variable]
   60 |     int sz = cor.size();
      |         ^~
new_home.cpp: In function 'void answer_queries()':
new_home.cpp:322:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  322 |     for (int i = 1; i < dat.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:422:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<interval_ray>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  422 |             while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
      |                   ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 22 ms 111196 KB Output is correct
2 Correct 24 ms 111196 KB Output is correct
3 Correct 22 ms 111196 KB Output is correct
4 Correct 22 ms 111196 KB Output is correct
5 Correct 22 ms 111452 KB Output is correct
6 Correct 25 ms 111708 KB Output is correct
7 Correct 23 ms 111708 KB Output is correct
8 Correct 23 ms 111848 KB Output is correct
9 Correct 23 ms 111708 KB Output is correct
10 Correct 25 ms 111904 KB Output is correct
11 Correct 28 ms 111448 KB Output is correct
12 Correct 29 ms 111704 KB Output is correct
13 Correct 28 ms 111448 KB Output is correct
14 Correct 23 ms 111452 KB Output is correct
15 Correct 23 ms 111704 KB Output is correct
16 Correct 23 ms 111708 KB Output is correct
17 Correct 25 ms 111660 KB Output is correct
18 Correct 23 ms 111704 KB Output is correct
19 Correct 24 ms 111740 KB Output is correct
20 Correct 26 ms 111704 KB Output is correct
21 Correct 26 ms 111388 KB Output is correct
22 Correct 28 ms 111708 KB Output is correct
23 Correct 24 ms 111708 KB Output is correct
24 Correct 23 ms 111708 KB Output is correct
25 Correct 23 ms 111708 KB Output is correct
26 Correct 23 ms 111708 KB Output is correct
27 Correct 23 ms 111448 KB Output is correct
28 Correct 23 ms 111452 KB Output is correct
29 Correct 23 ms 111452 KB Output is correct
30 Correct 25 ms 111452 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 22 ms 111196 KB Output is correct
2 Correct 24 ms 111196 KB Output is correct
3 Correct 22 ms 111196 KB Output is correct
4 Correct 22 ms 111196 KB Output is correct
5 Correct 22 ms 111452 KB Output is correct
6 Correct 25 ms 111708 KB Output is correct
7 Correct 23 ms 111708 KB Output is correct
8 Correct 23 ms 111848 KB Output is correct
9 Correct 23 ms 111708 KB Output is correct
10 Correct 25 ms 111904 KB Output is correct
11 Correct 28 ms 111448 KB Output is correct
12 Correct 29 ms 111704 KB Output is correct
13 Correct 28 ms 111448 KB Output is correct
14 Correct 23 ms 111452 KB Output is correct
15 Correct 23 ms 111704 KB Output is correct
16 Correct 23 ms 111708 KB Output is correct
17 Correct 25 ms 111660 KB Output is correct
18 Correct 23 ms 111704 KB Output is correct
19 Correct 24 ms 111740 KB Output is correct
20 Correct 26 ms 111704 KB Output is correct
21 Correct 26 ms 111388 KB Output is correct
22 Correct 28 ms 111708 KB Output is correct
23 Correct 24 ms 111708 KB Output is correct
24 Correct 23 ms 111708 KB Output is correct
25 Correct 23 ms 111708 KB Output is correct
26 Correct 23 ms 111708 KB Output is correct
27 Correct 23 ms 111448 KB Output is correct
28 Correct 23 ms 111452 KB Output is correct
29 Correct 23 ms 111452 KB Output is correct
30 Correct 25 ms 111452 KB Output is correct
31 Correct 1186 ms 271260 KB Output is correct
32 Correct 141 ms 129360 KB Output is correct
33 Correct 1168 ms 272416 KB Output is correct
34 Correct 1120 ms 269960 KB Output is correct
35 Correct 1193 ms 271872 KB Output is correct
36 Correct 1208 ms 271864 KB Output is correct
37 Correct 911 ms 257276 KB Output is correct
38 Correct 894 ms 257584 KB Output is correct
39 Correct 734 ms 230396 KB Output is correct
40 Correct 751 ms 237548 KB Output is correct
41 Correct 798 ms 219328 KB Output is correct
42 Correct 787 ms 221628 KB Output is correct
43 Correct 93 ms 126684 KB Output is correct
44 Correct 879 ms 217640 KB Output is correct
45 Correct 865 ms 208448 KB Output is correct
46 Correct 721 ms 191436 KB Output is correct
47 Correct 431 ms 186328 KB Output is correct
48 Correct 430 ms 183032 KB Output is correct
49 Correct 538 ms 196304 KB Output is correct
50 Correct 638 ms 212908 KB Output is correct
51 Correct 553 ms 191404 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2268 ms 752744 KB Output is correct
2 Correct 2142 ms 762344 KB Output is correct
3 Correct 2085 ms 820108 KB Output is correct
4 Correct 2196 ms 768000 KB Output is correct
5 Correct 1965 ms 773756 KB Output is correct
6 Correct 2144 ms 782908 KB Output is correct
7 Correct 2003 ms 805044 KB Output is correct
8 Correct 2110 ms 823588 KB Output is correct
9 Correct 2390 ms 767368 KB Output is correct
10 Correct 2398 ms 748188 KB Output is correct
11 Correct 1876 ms 779048 KB Output is correct
12 Correct 2181 ms 765292 KB Output is correct
# Verdict Execution time Memory Grader output
1 Runtime error 2187 ms 593348 KB Execution killed with signal 11
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 22 ms 111196 KB Output is correct
2 Correct 24 ms 111196 KB Output is correct
3 Correct 22 ms 111196 KB Output is correct
4 Correct 22 ms 111196 KB Output is correct
5 Correct 22 ms 111452 KB Output is correct
6 Correct 25 ms 111708 KB Output is correct
7 Correct 23 ms 111708 KB Output is correct
8 Correct 23 ms 111848 KB Output is correct
9 Correct 23 ms 111708 KB Output is correct
10 Correct 25 ms 111904 KB Output is correct
11 Correct 28 ms 111448 KB Output is correct
12 Correct 29 ms 111704 KB Output is correct
13 Correct 28 ms 111448 KB Output is correct
14 Correct 23 ms 111452 KB Output is correct
15 Correct 23 ms 111704 KB Output is correct
16 Correct 23 ms 111708 KB Output is correct
17 Correct 25 ms 111660 KB Output is correct
18 Correct 23 ms 111704 KB Output is correct
19 Correct 24 ms 111740 KB Output is correct
20 Correct 26 ms 111704 KB Output is correct
21 Correct 26 ms 111388 KB Output is correct
22 Correct 28 ms 111708 KB Output is correct
23 Correct 24 ms 111708 KB Output is correct
24 Correct 23 ms 111708 KB Output is correct
25 Correct 23 ms 111708 KB Output is correct
26 Correct 23 ms 111708 KB Output is correct
27 Correct 23 ms 111448 KB Output is correct
28 Correct 23 ms 111452 KB Output is correct
29 Correct 23 ms 111452 KB Output is correct
30 Correct 25 ms 111452 KB Output is correct
31 Correct 1186 ms 271260 KB Output is correct
32 Correct 141 ms 129360 KB Output is correct
33 Correct 1168 ms 272416 KB Output is correct
34 Correct 1120 ms 269960 KB Output is correct
35 Correct 1193 ms 271872 KB Output is correct
36 Correct 1208 ms 271864 KB Output is correct
37 Correct 911 ms 257276 KB Output is correct
38 Correct 894 ms 257584 KB Output is correct
39 Correct 734 ms 230396 KB Output is correct
40 Correct 751 ms 237548 KB Output is correct
41 Correct 798 ms 219328 KB Output is correct
42 Correct 787 ms 221628 KB Output is correct
43 Correct 93 ms 126684 KB Output is correct
44 Correct 879 ms 217640 KB Output is correct
45 Correct 865 ms 208448 KB Output is correct
46 Correct 721 ms 191436 KB Output is correct
47 Correct 431 ms 186328 KB Output is correct
48 Correct 430 ms 183032 KB Output is correct
49 Correct 538 ms 196304 KB Output is correct
50 Correct 638 ms 212908 KB Output is correct
51 Correct 553 ms 191404 KB Output is correct
52 Correct 639 ms 251904 KB Output is correct
53 Correct 599 ms 254108 KB Output is correct
54 Correct 779 ms 255196 KB Output is correct
55 Correct 691 ms 234280 KB Output is correct
56 Correct 636 ms 239800 KB Output is correct
57 Correct 736 ms 223484 KB Output is correct
58 Correct 740 ms 236724 KB Output is correct
59 Correct 707 ms 242320 KB Output is correct
60 Correct 776 ms 227140 KB Output is correct
61 Correct 135 ms 148204 KB Output is correct
62 Correct 650 ms 263092 KB Output is correct
63 Correct 687 ms 250292 KB Output is correct
64 Correct 718 ms 250296 KB Output is correct
65 Correct 789 ms 244984 KB Output is correct
66 Correct 764 ms 227328 KB Output is correct
67 Correct 219 ms 149652 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 22 ms 111196 KB Output is correct
2 Correct 24 ms 111196 KB Output is correct
3 Correct 22 ms 111196 KB Output is correct
4 Correct 22 ms 111196 KB Output is correct
5 Correct 22 ms 111452 KB Output is correct
6 Correct 25 ms 111708 KB Output is correct
7 Correct 23 ms 111708 KB Output is correct
8 Correct 23 ms 111848 KB Output is correct
9 Correct 23 ms 111708 KB Output is correct
10 Correct 25 ms 111904 KB Output is correct
11 Correct 28 ms 111448 KB Output is correct
12 Correct 29 ms 111704 KB Output is correct
13 Correct 28 ms 111448 KB Output is correct
14 Correct 23 ms 111452 KB Output is correct
15 Correct 23 ms 111704 KB Output is correct
16 Correct 23 ms 111708 KB Output is correct
17 Correct 25 ms 111660 KB Output is correct
18 Correct 23 ms 111704 KB Output is correct
19 Correct 24 ms 111740 KB Output is correct
20 Correct 26 ms 111704 KB Output is correct
21 Correct 26 ms 111388 KB Output is correct
22 Correct 28 ms 111708 KB Output is correct
23 Correct 24 ms 111708 KB Output is correct
24 Correct 23 ms 111708 KB Output is correct
25 Correct 23 ms 111708 KB Output is correct
26 Correct 23 ms 111708 KB Output is correct
27 Correct 23 ms 111448 KB Output is correct
28 Correct 23 ms 111452 KB Output is correct
29 Correct 23 ms 111452 KB Output is correct
30 Correct 25 ms 111452 KB Output is correct
31 Correct 1186 ms 271260 KB Output is correct
32 Correct 141 ms 129360 KB Output is correct
33 Correct 1168 ms 272416 KB Output is correct
34 Correct 1120 ms 269960 KB Output is correct
35 Correct 1193 ms 271872 KB Output is correct
36 Correct 1208 ms 271864 KB Output is correct
37 Correct 911 ms 257276 KB Output is correct
38 Correct 894 ms 257584 KB Output is correct
39 Correct 734 ms 230396 KB Output is correct
40 Correct 751 ms 237548 KB Output is correct
41 Correct 798 ms 219328 KB Output is correct
42 Correct 787 ms 221628 KB Output is correct
43 Correct 93 ms 126684 KB Output is correct
44 Correct 879 ms 217640 KB Output is correct
45 Correct 865 ms 208448 KB Output is correct
46 Correct 721 ms 191436 KB Output is correct
47 Correct 431 ms 186328 KB Output is correct
48 Correct 430 ms 183032 KB Output is correct
49 Correct 538 ms 196304 KB Output is correct
50 Correct 638 ms 212908 KB Output is correct
51 Correct 553 ms 191404 KB Output is correct
52 Correct 2268 ms 752744 KB Output is correct
53 Correct 2142 ms 762344 KB Output is correct
54 Correct 2085 ms 820108 KB Output is correct
55 Correct 2196 ms 768000 KB Output is correct
56 Correct 1965 ms 773756 KB Output is correct
57 Correct 2144 ms 782908 KB Output is correct
58 Correct 2003 ms 805044 KB Output is correct
59 Correct 2110 ms 823588 KB Output is correct
60 Correct 2390 ms 767368 KB Output is correct
61 Correct 2398 ms 748188 KB Output is correct
62 Correct 1876 ms 779048 KB Output is correct
63 Correct 2181 ms 765292 KB Output is correct
64 Runtime error 2187 ms 593348 KB Execution killed with signal 11
65 Halted 0 ms 0 KB -