Submission #864894

# Submission time Handle Problem Language Result Execution time Memory
864894 2023-10-23T17:38:57 Z danikoynov New Home (APIO18_new_home) C++14
57 / 100
4186 ms 1048576 KB
#include<bits/stdc++.h>
#define endl '\n'
 
using namespace std;
typedef long long ll;
 
const int maxn = 6e5 + 10, inf = 1e9;
 
struct store
{
    int x, t, a, b;
}s[maxn];
 
struct query
{
    int l, y, idx;
}task[maxn];
 
int n, k, q;
 
void input()
{
    cin >> n >> k >> q;
    for (int i = 1; i <= n; i ++)
        cin >> s[i].x >> s[i].t >> s[i].a >> s[i].b;
 
    for (int i = 1; i <= q; i ++)
        cin >> task[i].l >> task[i].y, task[i].idx = i;
}
 
unordered_map < int, int > rev;
int dif, back_to[2 * maxn];
 
int get_mid(int left, int right)
{
    if (left == right)
        return rev[left];
    
    int lf = rev[left], rf = rev[right];
    while(lf <= rf)
    {
        int mf = (lf + rf) / 2;
        if (abs(left - back_to[mf]) <= abs(right - back_to[mf]))
            lf = mf + 1;
        else
            rf = mf - 1;
    }
 
    return rf;
}
void compress_data()
{
    vector < int > cor;
    for (int i = 1; i <= n; i ++)
        cor.push_back(s[i].x);
    for (int i = 1; i <= q; i ++)
        cor.push_back(task[i].l);
 
    sort(cor.begin(), cor.end());
    int sz = cor.size();
 
    for (int i = 0; i < cor.size(); i ++)
    {
        if (i != 0 || cor[i - 1] != cor[i])
        {
            dif ++;
            rev[cor[i]] = dif;
            back_to[dif] = cor[i];
        }
    }
}

 
bool cmp_query(query t1, query t2)
{
    return t1.l < t2.l;
}
 
struct event
{
    int type, cor, add, arrive;
 
    event(int _type, int _cor, int _add, int _arrive)
    {
        type = _type;
        cor = _cor;
        add = _add;
        arrive = _arrive;
    }
};
 
bool cmp_event(event e1, event e2)
{
    if (e1.arrive != e2.arrive)
        return e1.arrive < e2.arrive;
 
    if (e1.add != e2.add)
        return e1.add < e2.add;
 
    return e1.cor < e2.cor; /// could have dublicates
}
 
 
 
multiset < int > act[maxn];

struct interval_ray
{
    int s, e;
    pair < int, int > ray;

    interval_ray(int _s, int _e, pair < int, int > _ray)
    {
        s = _s;
        e = _e;
        ray = _ray;
    }
};

vector < interval_ray > seg_left, seg_right;

map < pair < int, int >, int > ray_right[maxn], ray_left[maxn];
    vector < int > dat;
void make_left_segment(int start, int finish, int timer, int type)
{
    ///cout << "left " << start << " " << finish << " " << timer << endl;
    seg_left.push_back(interval_ray(ray_left[type][{start, finish}], timer - 1, {start, finish}));
    ray_left[type][{start, finish}] = 0;
}

void make_right_segment(int start, int finish, int timer, int type)
{
    dat.push_back(ray_right[type][{start, finish}]);
    dat.push_back(timer - 1);
    seg_right.push_back(interval_ray(ray_right[type][{start, finish}], timer - 1, {start, finish}));
    ray_right[type][{start, finish}] = 0;
}

void add_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].upper_bound(cor);
    int aft = *it;
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
       
        make_right_segment(-inf, inf, timer, type);
        ray_left[type][{cor, -inf}] = timer;
        ray_right[type][{cor, +inf}] = timer;
    }
    else
    if (bef == - inf)
    {
        make_left_segment(aft, -inf, timer, type);
        int mid = (cor + aft) / 2;
        ray_right[type][{cor, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
        ray_left[type][{cor, -inf}] = timer;
    }
    else
    if (aft == inf)
    {
        make_right_segment(bef, inf, timer, type);
        int mid = (bef + cor) / 2;
        ray_left[type][{cor, mid + 1}] = timer;
        ray_right[type][{bef, mid}] = timer;
        ray_right[type][{cor, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        make_right_segment(bef, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
        int mid_left = (bef + cor) / 2;
        ray_right[type][{bef, mid_left}] = timer;
        ray_left[type][{cor, mid_left + 1}] = timer;
        int mid_right = (cor + aft) / 2;
        ray_right[type][{cor, mid_right}] = timer;
        ray_left[type][{aft, mid_right + 1}] = timer;
    }

    act[type].insert(cor);
}


void remove_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].find(cor);
    int aft = *next(it);
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        ///cout << "reverse " << timer << endl;

        make_left_segment(cor, -inf, timer, type);
        make_right_segment(cor, +inf, timer, type);
        ray_right[type][{-inf, inf}] = timer;

    }
    else
    if (bef == -inf)
    {

        ///cout << "step " << timer << endl;
        make_left_segment(cor, -inf, timer, type);
        int mid = (cor + aft) / 2;
        make_right_segment(cor, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
                ray_left[type][{aft, -inf}] = timer;


    }
    else
    if (aft == inf)
    {

        make_right_segment(cor, inf, timer, type);
        int mid = (bef + cor) / 2;
        make_left_segment(cor, mid + 1, timer, type);
        make_right_segment(bef, mid, timer, type);
                ray_right[type][{bef, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        ///assert((ray_right[type][{bef, mid}]) == 0);
        ///assert((ray_left[type][{aft, mid + 1}]) == 0);

        int mid_left = (bef + cor) / 2;
        make_right_segment(bef, mid_left, timer, type);
        make_left_segment(cor, mid_left + 1, timer, type);
        int mid_right = (aft + cor) / 2;
        make_right_segment(cor, mid_right, timer, type);
        make_left_segment(aft, mid_right + 1, timer, type);

                ray_right[type][{bef, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;

    }

    act[type].erase(it);
}
 
int ans[maxn];
 
vector < interval_ray > tree_left[maxn * 8], tree_right[maxn * 8];
int pt_lf[8 * maxn], bs_lf[8 * maxn];
int pt_rf[8 * maxn], bs_rf[8 * maxn];

bool cmp_ray_second(interval_ray r1, interval_ray r2)
{
    return r1.ray.second < r2.ray.second;
}
void update_range(int root, int left, int right, int qleft, int qright, interval_ray &ray, int type)
{
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        if (type == -1)
            tree_left[root].push_back(ray);
        else
            tree_right[root].push_back(ray);
        return;
    }

    int mid = (left + right) / 2;
    update_range(root * 2, left, mid, qleft, qright, ray, type);
    update_range(root * 2 + 1, mid + 1, right, qleft, qright, ray, type);

}

unordered_map < int, int > event_times;

void answer_queries()
{
    sort(task + 1, task + q + 1, cmp_query);
    
    vector < event > events;
    for (int i = 1; i <= n; i ++)
    {
        events.push_back(event(s[i].t, s[i].x, 1, s[i].a));
        events.push_back(event(s[i].t, s[i].x, -1, s[i].b + 1));
    }
 
    sort(events.begin(), events.end(), cmp_event);
 
    for (int i = 1; i <= k; i ++)
    {
        act[i].insert(-inf);
        act[i].insert(inf);
        ray_right[i][{-inf, inf}] = 1;
    }
 
    
    int cnt = 0;
    dat.push_back(1);
    dat.push_back(0);

    for (event cur : events)
    {
        dat.push_back(cur.arrive - 1);
        dat.push_back(cur.arrive);
        ///cout << "event " << cur.arrive << " " << cur.add << " " << cur.cor << " " << cur.type << endl;
        if (cur.add == 1)
            add_event(cur.type, cur.cor, cur.arrive);
        else
            remove_event(cur.type, cur.cor, cur.arrive);
    }

    dat.push_back(inf - 1);
    dat.push_back(inf);

    for (int i = 1; i <= q; i ++)
        dat.push_back(task[i].y);

    sort(dat.begin(), dat.end());
    cnt ++;
    event_times[dat[0]] = cnt;
    for (int i = 1; i < dat.size(); i ++)
    {
        if (dat[i] == dat[i - 1])
            continue;
        cnt ++;
        event_times[dat[i]] = cnt;
    }

    map < pair < int, int >, int > :: iterator it;
    for (int i = 1; i <= k; i ++)
        for (it = ray_right[i].begin(); it != ray_right[i].end(); it ++)
        {
            ///cout << it -> first.first << " :: " << it -> first.second << " " << it -> second << endl;
            if (it -> second != 0)
                make_right_segment(it -> first.first, it -> first.second, inf, i);
        }


    for (int i = 1; i <= k; i ++)
        for (it = ray_left[i].begin(); it != ray_left[i].end(); it ++)
        {
            if (it -> second != 0)
            {
            ///cout << "here " << endl;
                make_left_segment(it -> first.first, it -> first.second, inf, i);
            }
        }

    sort(seg_right.begin(), seg_right.end(), cmp_ray_second);
    sort(seg_left.begin(), seg_left.end(), cmp_ray_second);
    
    for (interval_ray cur : seg_left)
    {
        assert(event_times[cur.e] <= event_times[cur.e + 1] - 1);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e], cur, -1);
    ///    cout << "left ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }

    for (interval_ray cur : seg_right)
    {
        assert(event_times[cur.e] <= event_times[cur.e + 1] - 1);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e], cur, 1);
        ///cout << "right ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }

    
    for (int i = 1; i <= 4 * cnt; i ++)
    {
        pt_rf[i] = (int)(tree_right[i].size()) - 1;
        bs_rf[i] = inf;

        pt_lf[i] = 0;
        bs_lf[i] = -inf;
        ///sort(tree_right[i].begin(), tree_right[i].end(), cmp_ray_second);
        ///sort(tree_left[i].begin(), tree_left[i].end(), cmp_ray_second);
    }
  
    for (int i = q; i > 0; i --)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;

        while(true)
        {

            while(pt_rf[root] >= 0 && task[i].l <= tree_right[root][pt_rf[root]].ray.second)
            {
                bs_rf[root] = min(bs_rf[root], tree_right[root][pt_rf[root]].ray.first);
                pt_rf[root] --;
            }
            longest = max(longest, task[i].l - bs_rf[root]);


            if (left == right)
                break;

            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }

        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }

    for (int i = 1; i <= q; i ++)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
        while(true)
        {
            ///cout << "step " << root << " " << left << " " << right << endl;
            while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
            {
                bs_lf[root] = max(bs_lf[root], tree_left[root][pt_lf[root]].ray.first);
                pt_lf[root] ++;
            }
            longest = max(longest, bs_lf[root] - task[i].l);
            /**for (interval_ray cur : tree_left[root])
            {
                if (task[i].l >= cur.ray.second)
                    longest = max(longest, cur.ray.first - task[i].l);
            }*/


            if (left == right)
                break;

            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }

        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
 
    for (int i = 1; i <= q; i ++)
    {
        if (ans[i] > 2e8)
            cout << -1 << endl;
        else
            cout << ans[i] << endl;
    }
}
void solve()
{
    input();
    compress_data();
    answer_queries();
}
 
void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}
int main()
{
    speed();
    solve();
    return 0;
}
 
/**
2 1 2
3 1 1 3
5 1 3 4
3 3
3 4
 
 
 
 
4 2 4
3 1 1 10
9 2 2 4
7 2 5 7
4 1 8 10
5 3
5 6
5 9
1 10
 
2 1 3
1 1 1 4
1 1 2 6
1 3
1 5
1 7
 
1 1 1
100000000 1 1 1
1 1
 
 
 
*/

Compilation message

new_home.cpp: In function 'void compress_data()':
new_home.cpp:62:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   62 |     for (int i = 0; i < cor.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:60:9: warning: unused variable 'sz' [-Wunused-variable]
   60 |     int sz = cor.size();
      |         ^~
new_home.cpp: In function 'void answer_queries()':
new_home.cpp:323:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  323 |     for (int i = 1; i < dat.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:424:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<interval_ray>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  424 |             while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
      |                   ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 64 ms 324436 KB Output is correct
2 Correct 64 ms 324672 KB Output is correct
3 Correct 64 ms 324432 KB Output is correct
4 Correct 64 ms 324684 KB Output is correct
5 Correct 66 ms 324688 KB Output is correct
6 Correct 67 ms 325204 KB Output is correct
7 Correct 68 ms 325372 KB Output is correct
8 Correct 68 ms 325464 KB Output is correct
9 Correct 68 ms 325192 KB Output is correct
10 Correct 67 ms 325300 KB Output is correct
11 Correct 66 ms 325080 KB Output is correct
12 Correct 66 ms 325236 KB Output is correct
13 Correct 68 ms 324948 KB Output is correct
14 Correct 67 ms 324948 KB Output is correct
15 Correct 67 ms 325232 KB Output is correct
16 Correct 68 ms 325204 KB Output is correct
17 Correct 67 ms 325204 KB Output is correct
18 Correct 68 ms 325200 KB Output is correct
19 Correct 66 ms 325200 KB Output is correct
20 Correct 66 ms 325204 KB Output is correct
21 Correct 64 ms 324688 KB Output is correct
22 Correct 66 ms 325200 KB Output is correct
23 Correct 68 ms 325204 KB Output is correct
24 Correct 67 ms 325336 KB Output is correct
25 Correct 67 ms 325292 KB Output is correct
26 Correct 69 ms 325312 KB Output is correct
27 Correct 66 ms 324804 KB Output is correct
28 Correct 65 ms 324948 KB Output is correct
29 Correct 65 ms 324948 KB Output is correct
30 Correct 65 ms 324956 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 64 ms 324436 KB Output is correct
2 Correct 64 ms 324672 KB Output is correct
3 Correct 64 ms 324432 KB Output is correct
4 Correct 64 ms 324684 KB Output is correct
5 Correct 66 ms 324688 KB Output is correct
6 Correct 67 ms 325204 KB Output is correct
7 Correct 68 ms 325372 KB Output is correct
8 Correct 68 ms 325464 KB Output is correct
9 Correct 68 ms 325192 KB Output is correct
10 Correct 67 ms 325300 KB Output is correct
11 Correct 66 ms 325080 KB Output is correct
12 Correct 66 ms 325236 KB Output is correct
13 Correct 68 ms 324948 KB Output is correct
14 Correct 67 ms 324948 KB Output is correct
15 Correct 67 ms 325232 KB Output is correct
16 Correct 68 ms 325204 KB Output is correct
17 Correct 67 ms 325204 KB Output is correct
18 Correct 68 ms 325200 KB Output is correct
19 Correct 66 ms 325200 KB Output is correct
20 Correct 66 ms 325204 KB Output is correct
21 Correct 64 ms 324688 KB Output is correct
22 Correct 66 ms 325200 KB Output is correct
23 Correct 68 ms 325204 KB Output is correct
24 Correct 67 ms 325336 KB Output is correct
25 Correct 67 ms 325292 KB Output is correct
26 Correct 69 ms 325312 KB Output is correct
27 Correct 66 ms 324804 KB Output is correct
28 Correct 65 ms 324948 KB Output is correct
29 Correct 65 ms 324948 KB Output is correct
30 Correct 65 ms 324956 KB Output is correct
31 Correct 1273 ms 499124 KB Output is correct
32 Correct 172 ms 340592 KB Output is correct
33 Correct 1272 ms 503500 KB Output is correct
34 Correct 1236 ms 498268 KB Output is correct
35 Correct 1296 ms 497144 KB Output is correct
36 Correct 1293 ms 500160 KB Output is correct
37 Correct 997 ms 485008 KB Output is correct
38 Correct 991 ms 489444 KB Output is correct
39 Correct 827 ms 459156 KB Output is correct
40 Correct 832 ms 468724 KB Output is correct
41 Correct 915 ms 446108 KB Output is correct
42 Correct 904 ms 448172 KB Output is correct
43 Correct 144 ms 339072 KB Output is correct
44 Correct 904 ms 444416 KB Output is correct
45 Correct 885 ms 434612 KB Output is correct
46 Correct 754 ms 418560 KB Output is correct
47 Correct 528 ms 412128 KB Output is correct
48 Correct 521 ms 409728 KB Output is correct
49 Correct 615 ms 423200 KB Output is correct
50 Correct 672 ms 439568 KB Output is correct
51 Correct 617 ms 416596 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2268 ms 1030816 KB Output is correct
2 Correct 2225 ms 1034148 KB Output is correct
3 Correct 2093 ms 1028840 KB Output is correct
4 Correct 2242 ms 1013452 KB Output is correct
5 Correct 2037 ms 984932 KB Output is correct
6 Correct 2288 ms 1028400 KB Output is correct
7 Correct 2066 ms 1032172 KB Output is correct
8 Correct 2246 ms 1004648 KB Output is correct
9 Correct 2424 ms 1023688 KB Output is correct
10 Correct 2510 ms 1014576 KB Output is correct
11 Correct 2059 ms 981336 KB Output is correct
12 Correct 2336 ms 996768 KB Output is correct
# Verdict Execution time Memory Grader output
1 Runtime error 4186 ms 1048576 KB Execution killed with signal 9
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 64 ms 324436 KB Output is correct
2 Correct 64 ms 324672 KB Output is correct
3 Correct 64 ms 324432 KB Output is correct
4 Correct 64 ms 324684 KB Output is correct
5 Correct 66 ms 324688 KB Output is correct
6 Correct 67 ms 325204 KB Output is correct
7 Correct 68 ms 325372 KB Output is correct
8 Correct 68 ms 325464 KB Output is correct
9 Correct 68 ms 325192 KB Output is correct
10 Correct 67 ms 325300 KB Output is correct
11 Correct 66 ms 325080 KB Output is correct
12 Correct 66 ms 325236 KB Output is correct
13 Correct 68 ms 324948 KB Output is correct
14 Correct 67 ms 324948 KB Output is correct
15 Correct 67 ms 325232 KB Output is correct
16 Correct 68 ms 325204 KB Output is correct
17 Correct 67 ms 325204 KB Output is correct
18 Correct 68 ms 325200 KB Output is correct
19 Correct 66 ms 325200 KB Output is correct
20 Correct 66 ms 325204 KB Output is correct
21 Correct 64 ms 324688 KB Output is correct
22 Correct 66 ms 325200 KB Output is correct
23 Correct 68 ms 325204 KB Output is correct
24 Correct 67 ms 325336 KB Output is correct
25 Correct 67 ms 325292 KB Output is correct
26 Correct 69 ms 325312 KB Output is correct
27 Correct 66 ms 324804 KB Output is correct
28 Correct 65 ms 324948 KB Output is correct
29 Correct 65 ms 324948 KB Output is correct
30 Correct 65 ms 324956 KB Output is correct
31 Correct 1273 ms 499124 KB Output is correct
32 Correct 172 ms 340592 KB Output is correct
33 Correct 1272 ms 503500 KB Output is correct
34 Correct 1236 ms 498268 KB Output is correct
35 Correct 1296 ms 497144 KB Output is correct
36 Correct 1293 ms 500160 KB Output is correct
37 Correct 997 ms 485008 KB Output is correct
38 Correct 991 ms 489444 KB Output is correct
39 Correct 827 ms 459156 KB Output is correct
40 Correct 832 ms 468724 KB Output is correct
41 Correct 915 ms 446108 KB Output is correct
42 Correct 904 ms 448172 KB Output is correct
43 Correct 144 ms 339072 KB Output is correct
44 Correct 904 ms 444416 KB Output is correct
45 Correct 885 ms 434612 KB Output is correct
46 Correct 754 ms 418560 KB Output is correct
47 Correct 528 ms 412128 KB Output is correct
48 Correct 521 ms 409728 KB Output is correct
49 Correct 615 ms 423200 KB Output is correct
50 Correct 672 ms 439568 KB Output is correct
51 Correct 617 ms 416596 KB Output is correct
52 Correct 785 ms 477532 KB Output is correct
53 Correct 764 ms 479556 KB Output is correct
54 Correct 973 ms 482016 KB Output is correct
55 Correct 838 ms 460808 KB Output is correct
56 Correct 775 ms 468108 KB Output is correct
57 Correct 906 ms 450552 KB Output is correct
58 Correct 927 ms 463112 KB Output is correct
59 Correct 878 ms 466860 KB Output is correct
60 Correct 920 ms 452672 KB Output is correct
61 Correct 202 ms 360504 KB Output is correct
62 Correct 768 ms 478460 KB Output is correct
63 Correct 878 ms 476320 KB Output is correct
64 Correct 901 ms 476408 KB Output is correct
65 Correct 918 ms 471512 KB Output is correct
66 Correct 950 ms 453420 KB Output is correct
67 Correct 277 ms 363612 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 64 ms 324436 KB Output is correct
2 Correct 64 ms 324672 KB Output is correct
3 Correct 64 ms 324432 KB Output is correct
4 Correct 64 ms 324684 KB Output is correct
5 Correct 66 ms 324688 KB Output is correct
6 Correct 67 ms 325204 KB Output is correct
7 Correct 68 ms 325372 KB Output is correct
8 Correct 68 ms 325464 KB Output is correct
9 Correct 68 ms 325192 KB Output is correct
10 Correct 67 ms 325300 KB Output is correct
11 Correct 66 ms 325080 KB Output is correct
12 Correct 66 ms 325236 KB Output is correct
13 Correct 68 ms 324948 KB Output is correct
14 Correct 67 ms 324948 KB Output is correct
15 Correct 67 ms 325232 KB Output is correct
16 Correct 68 ms 325204 KB Output is correct
17 Correct 67 ms 325204 KB Output is correct
18 Correct 68 ms 325200 KB Output is correct
19 Correct 66 ms 325200 KB Output is correct
20 Correct 66 ms 325204 KB Output is correct
21 Correct 64 ms 324688 KB Output is correct
22 Correct 66 ms 325200 KB Output is correct
23 Correct 68 ms 325204 KB Output is correct
24 Correct 67 ms 325336 KB Output is correct
25 Correct 67 ms 325292 KB Output is correct
26 Correct 69 ms 325312 KB Output is correct
27 Correct 66 ms 324804 KB Output is correct
28 Correct 65 ms 324948 KB Output is correct
29 Correct 65 ms 324948 KB Output is correct
30 Correct 65 ms 324956 KB Output is correct
31 Correct 1273 ms 499124 KB Output is correct
32 Correct 172 ms 340592 KB Output is correct
33 Correct 1272 ms 503500 KB Output is correct
34 Correct 1236 ms 498268 KB Output is correct
35 Correct 1296 ms 497144 KB Output is correct
36 Correct 1293 ms 500160 KB Output is correct
37 Correct 997 ms 485008 KB Output is correct
38 Correct 991 ms 489444 KB Output is correct
39 Correct 827 ms 459156 KB Output is correct
40 Correct 832 ms 468724 KB Output is correct
41 Correct 915 ms 446108 KB Output is correct
42 Correct 904 ms 448172 KB Output is correct
43 Correct 144 ms 339072 KB Output is correct
44 Correct 904 ms 444416 KB Output is correct
45 Correct 885 ms 434612 KB Output is correct
46 Correct 754 ms 418560 KB Output is correct
47 Correct 528 ms 412128 KB Output is correct
48 Correct 521 ms 409728 KB Output is correct
49 Correct 615 ms 423200 KB Output is correct
50 Correct 672 ms 439568 KB Output is correct
51 Correct 617 ms 416596 KB Output is correct
52 Correct 2268 ms 1030816 KB Output is correct
53 Correct 2225 ms 1034148 KB Output is correct
54 Correct 2093 ms 1028840 KB Output is correct
55 Correct 2242 ms 1013452 KB Output is correct
56 Correct 2037 ms 984932 KB Output is correct
57 Correct 2288 ms 1028400 KB Output is correct
58 Correct 2066 ms 1032172 KB Output is correct
59 Correct 2246 ms 1004648 KB Output is correct
60 Correct 2424 ms 1023688 KB Output is correct
61 Correct 2510 ms 1014576 KB Output is correct
62 Correct 2059 ms 981336 KB Output is correct
63 Correct 2336 ms 996768 KB Output is correct
64 Runtime error 4186 ms 1048576 KB Execution killed with signal 9
65 Halted 0 ms 0 KB -