답안 #860829

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
860829 2023-10-14T13:57:09 Z green_gold_dog Unique Cities (JOI19_ho_t5) C++17
100 / 100
530 ms 84008 KB
//#pragma GCC optimize("Ofast")
//#pragma GCC target("avx,avx2,sse,sse2,sse3,ssse3,sse4,abm,popcnt,mmx")
#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
typedef double db;
typedef long double ldb;
typedef complex<double> cd;

constexpr ll INF64 = 9'000'000'000'000'000'000, INF32 = 2'000'000'000, MOD = 1'000'000'007;
constexpr db PI = acos(-1);
constexpr bool IS_FILE = false, IS_TEST_CASES = false;

random_device rd;
mt19937 rnd32(0);
mt19937_64 rnd64(0);

template<typename T>
bool assign_max(T& a, T b) {
        if (b > a) {
                a = b;
                return true;
        }
        return false;
}

template<typename T>
bool assign_min(T& a, T b) {
        if (b < a) {
                a = b;
                return true;
        }
        return false;
}

template<typename T>
T square(T a) {
        return a * a;
}

template<>
struct std::hash<pair<ll, ll>> {
        ll operator() (pair<ll, ll> p) const {
                return ((__int128)p.first * MOD + p.second) % INF64;
        }
};

struct node {
        pair<ll, ll> x;
        ll y;
        ll sz;
        node *l, *r;
        node(pair<ll, ll> x = pair<ll, ll>(0, 0), node *l = nullptr, node *r = nullptr): x(x), l(l), r(r) {
                y = rnd32();
                sz = 1;
        }
};

ll get(node *t) {
        if (t == nullptr) {
                return 0;
        }
        return t->sz;
}

void upd(node *t) {
        t->sz = get(t->l) + get(t->r) + 1;
}

pair<node*, node*> split(node *t, pair<ll, ll> x) {
        if (t == nullptr) {
                return make_pair(nullptr, nullptr);
        }
        if (t->x > x) {
                auto[l, r] = split(t->l, x);
                t->l = r;
                upd(t);
                return make_pair(l, t);
        } else {
                auto[l, r] = split(t->r, x);
                t->r = l;
                upd(t);
                return make_pair(t, r);
        }
}

node* merge(node *l, node *r) {
        if (l == nullptr) {
                return r;
        }
        if (r == nullptr) {
                return l;
        }
        if (l->y > r->y) {
                l->r = merge(l->r, r);
                upd(l);
                return l;
        } else {
                r->l = merge(l, r->l);
                upd(r);
                return r;
        }
}

struct cartesian_tree {
        node* root;
        vector<vector<pair<ll, node*>>> b;
        vector<ll> ad;
        vector<ll> last;
        ll a = 0;
        cartesian_tree(ll c) {
                last.resize(c, 0);
                ad.push_back(0);
                root = nullptr;
                b.push_back(vector<pair<ll, node*>>(0));
        }
        void add() {
                a++;
                ad.back()++;
        }
        void make() {
                b.push_back(vector<pair<ll, node*>>(0));
                ad.push_back(0);
        }
        void back() {
                a -= ad.back();
                ad.pop_back();
                reverse(b.back().begin(), b.back().end());
                for (auto[bb, t] : b.back()) {
                        if (bb == 1) {
                                root = merge(t, root);
                        } else {
                                pair<ll, ll> x = t->x;
                                last[x.second] = bb;
                                auto[l, r] = split(root, x);
                                x.second--;
                                auto[l_l, l_r] = split(l, x);
                                root = merge(l_l, r);
                        }
                }
                b.pop_back();
        }
        ll getsz() {
                return get(root);
        }
        void del(ll x) {
                x -= a;
                auto[l, r] = split(root, make_pair(x, INF32));
                b.back().emplace_back(1, l);
                root = r;
        }
        void insert(ll c) {
                auto[l, r] = split(root, make_pair(last[c], c));
                auto[l_l, l_r] = split(l, make_pair(last[c], c - 1));
                if (get(l_r) == 0) {
                        l_r = new node(make_pair(-a, c));
                        b.back().emplace_back(last[c], l_r);
                        last[c] = -a;
                        root = merge(l_l, r);
                        auto[nl, nr] = split(root, l_r->x);
                        l_l = nl;
                        r = nr;
                }
                root = merge(merge(l_l, l_r), r);
        }
};

ll get_md(vector<vector<ll>>& tree, ll v) {
        vector<ll> dist(tree.size(), INF32);
        queue<ll> q;
        dist[v] = 0;
        q.push(v);
        ll lst = v;
        while (!q.empty()) {
                ll x = q.front();
                q.pop();
                lst = x;
                for (auto i : tree[x]) {
                        if (assign_min(dist[i], dist[x] + 1)) {
                                q.push(i);
                        }
                }
        }
        return lst;
}

bool find(ll v, ll p, vector<vector<ll>>& tree, ll x, vector<ll>& now) {
        now.push_back(v);
        if (v == x) {
                return true;
        }
        for (auto i : tree[v]) {
                if (i != p) {
                        if (find(i, v, tree, x, now)) {
                                return true;
                        }
                }
        }
        now.pop_back();
        return false;
}

void dfs(ll v, vector<bool>& used, vector<vector<ll>>& tree, vector<ll>& h) {
        h[v] = 0;
        used[v] = true;
        for (auto i : tree[v]) {
                if (!used[i]) {
                        dfs(i, used, tree, h);
                        assign_max(h[v], h[i]);
                }
        }
        h[v]++;
}

void dfs2(ll v, ll p, vector<vector<ll>>& tree, vector<ll>& h, cartesian_tree& ct, vector<ll>& ans, vector<ll>& c) {
        vector<pair<ll, ll>> all;
        for (auto i : tree[v]) {
                if (i != p) {
                        all.emplace_back(h[i], i);
                }
        }
        sort(all.begin(), all.end());
        reverse(all.begin(), all.end());
        ct.make();
        if (all.size() > 1) {
                ct.del(all[1].first);
        }
        ct.insert(c[v]);
        ct.add();
        if (!all.empty()) {
                dfs2(all[0].second, v, tree, h, ct, ans, c);
        }
        ct.back();
        ct.make();
        if (!all.empty()) {
                ct.del(all[0].first);
        }
        ans[v] = ct.getsz();
        ct.insert(c[v]);
        ct.add();
        if (!all.empty()) {
                all.erase(all.begin());
        }
        for (auto[_, i] : all) {
                dfs2(i, v, tree, h, ct, ans, c);
        }
        ct.back();
}

void solve() {
        ll n, m;
        cin >> n >> m;
        vector<vector<ll>> tree(n);
        for (ll i = 1; i < n; i++) {
                ll a, b;
                cin >> a >> b;
                a--;
                b--;
                tree[a].push_back(b);
                tree[b].push_back(a);
        }
        ll l = get_md(tree, 0);
        ll r = get_md(tree, l);
        vector<ll> way;
        find(l, l, tree, r, way);
        vector<ll> c(n);
        for (ll i = 0; i < n; i++) {
                cin >> c[i];
                c[i]--;
        }
        vector<ll> ans(n, -1);
        vector<bool> used(n, false);
        for (auto i : way) {
                used[i] = true;
        }
        vector<ll> h(n, 0);
        for (auto i : way) {
                dfs(i, used, tree, h);
        }
        for (ll i = 0; i < n; i++) {
                used[i] = false;
        }
        for (auto i : way) {
                used[i] = true;
        }
        ll mid = way[way.size() / 2];
        bool b = false;
        cartesian_tree ct(m);
        for (ll i = 0; i < way.size(); i++) {
                if (way[i] == mid) {
                        b = true;
                }
                if (b) {
                        ct.make();
                        ct.del(way.size() - i - 1);
                        ans[way[i]] = ct.getsz();
                        ct.insert(c[way[i]]);
                        ct.add();
                        for (auto j : tree[way[i]]) {
                                if (!used[j]) {
                                        dfs2(j, way[i], tree, h, ct, ans, c);
                                }
                        }
                        ct.back();
                }
                ct.del(h[way[i]] - 1);
                ct.insert(c[way[i]]);
                ct.add();
        }
        ct = cartesian_tree(m);
        mid = way[way.size() / 2 - 1];
        reverse(way.begin(), way.end());
        b = false;
        for (ll i = 0; i < way.size(); i++) {
                if (way[i] == mid) {
                        b = true;
                }
                if (b) {
                        ct.make();
                        ct.del(way.size() - i - 1);
                        ans[way[i]] = ct.getsz();
                        ct.insert(c[way[i]]);
                        ct.add();
                        for (auto j : tree[way[i]]) {
                                if (!used[j]) {
                                        dfs2(j, way[i], tree, h, ct, ans, c);
                                }
                        }
                        ct.back();
                }
                ct.del(h[way[i]] - 1);
                ct.insert(c[way[i]]);
                ct.add();
        }
        for (auto i : ans) {
                cout << i << '\n';
        }
}

int main() {
        if (IS_FILE) {
                freopen("", "r", stdin);
                freopen("", "w", stdout);
        }
        ios_base::sync_with_stdio(false);
        cin.tie(0);
        cout.tie(0);
        ll t = 1;
        if (IS_TEST_CASES) {
                cin >> t;
        }
        for (ll i = 0; i < t; i++) {
                solve();
        }
}

Compilation message

joi2019_ho_t5.cpp: In function 'void solve()':
joi2019_ho_t5.cpp:291:26: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  291 |         for (ll i = 0; i < way.size(); i++) {
      |                        ~~^~~~~~~~~~~~
joi2019_ho_t5.cpp:316:26: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  316 |         for (ll i = 0; i < way.size(); i++) {
      |                        ~~^~~~~~~~~~~~
joi2019_ho_t5.cpp: In function 'int main()':
joi2019_ho_t5.cpp:344:24: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)' declared with attribute 'warn_unused_result' [-Wunused-result]
  344 |                 freopen("", "r", stdin);
      |                 ~~~~~~~^~~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:345:24: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)' declared with attribute 'warn_unused_result' [-Wunused-result]
  345 |                 freopen("", "w", stdout);
      |                 ~~~~~~~^~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 2 ms 804 KB Output is correct
3 Correct 2 ms 604 KB Output is correct
4 Correct 2 ms 860 KB Output is correct
5 Correct 2 ms 604 KB Output is correct
6 Correct 2 ms 860 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 2 ms 604 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 2 ms 604 KB Output is correct
12 Correct 1 ms 860 KB Output is correct
13 Correct 2 ms 860 KB Output is correct
14 Correct 1 ms 604 KB Output is correct
15 Correct 2 ms 860 KB Output is correct
16 Correct 1 ms 600 KB Output is correct
17 Correct 2 ms 860 KB Output is correct
18 Correct 1 ms 860 KB Output is correct
19 Correct 2 ms 860 KB Output is correct
20 Correct 3 ms 860 KB Output is correct
21 Correct 2 ms 860 KB Output is correct
22 Correct 2 ms 860 KB Output is correct
23 Correct 2 ms 860 KB Output is correct
24 Correct 2 ms 860 KB Output is correct
25 Correct 2 ms 860 KB Output is correct
26 Correct 2 ms 860 KB Output is correct
27 Correct 3 ms 860 KB Output is correct
28 Correct 3 ms 860 KB Output is correct
29 Correct 2 ms 860 KB Output is correct
30 Correct 1 ms 856 KB Output is correct
31 Correct 2 ms 860 KB Output is correct
32 Correct 2 ms 860 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 72 ms 11976 KB Output is correct
2 Correct 79 ms 25028 KB Output is correct
3 Correct 19 ms 6288 KB Output is correct
4 Correct 144 ms 21932 KB Output is correct
5 Correct 176 ms 44344 KB Output is correct
6 Correct 201 ms 42768 KB Output is correct
7 Correct 187 ms 20448 KB Output is correct
8 Correct 181 ms 23136 KB Output is correct
9 Correct 151 ms 24628 KB Output is correct
10 Correct 151 ms 23604 KB Output is correct
11 Correct 137 ms 22136 KB Output is correct
12 Correct 169 ms 35372 KB Output is correct
13 Correct 206 ms 32292 KB Output is correct
14 Correct 174 ms 37332 KB Output is correct
15 Correct 80 ms 20904 KB Output is correct
16 Correct 180 ms 39072 KB Output is correct
17 Correct 195 ms 40840 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 161 ms 35156 KB Output is correct
2 Correct 530 ms 80392 KB Output is correct
3 Correct 40 ms 11364 KB Output is correct
4 Correct 234 ms 48080 KB Output is correct
5 Correct 493 ms 84008 KB Output is correct
6 Correct 346 ms 70828 KB Output is correct
7 Correct 225 ms 49400 KB Output is correct
8 Correct 346 ms 55776 KB Output is correct
9 Correct 297 ms 52792 KB Output is correct
10 Correct 284 ms 51760 KB Output is correct
11 Correct 229 ms 49616 KB Output is correct
12 Correct 503 ms 77000 KB Output is correct
13 Correct 340 ms 64192 KB Output is correct
14 Correct 356 ms 70400 KB Output is correct
15 Correct 152 ms 49980 KB Output is correct
16 Correct 368 ms 76508 KB Output is correct
17 Correct 321 ms 70500 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 2 ms 804 KB Output is correct
3 Correct 2 ms 604 KB Output is correct
4 Correct 2 ms 860 KB Output is correct
5 Correct 2 ms 604 KB Output is correct
6 Correct 2 ms 860 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 2 ms 604 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 2 ms 604 KB Output is correct
12 Correct 1 ms 860 KB Output is correct
13 Correct 2 ms 860 KB Output is correct
14 Correct 1 ms 604 KB Output is correct
15 Correct 2 ms 860 KB Output is correct
16 Correct 1 ms 600 KB Output is correct
17 Correct 2 ms 860 KB Output is correct
18 Correct 1 ms 860 KB Output is correct
19 Correct 2 ms 860 KB Output is correct
20 Correct 3 ms 860 KB Output is correct
21 Correct 2 ms 860 KB Output is correct
22 Correct 2 ms 860 KB Output is correct
23 Correct 2 ms 860 KB Output is correct
24 Correct 2 ms 860 KB Output is correct
25 Correct 2 ms 860 KB Output is correct
26 Correct 2 ms 860 KB Output is correct
27 Correct 3 ms 860 KB Output is correct
28 Correct 3 ms 860 KB Output is correct
29 Correct 2 ms 860 KB Output is correct
30 Correct 1 ms 856 KB Output is correct
31 Correct 2 ms 860 KB Output is correct
32 Correct 2 ms 860 KB Output is correct
33 Correct 72 ms 11976 KB Output is correct
34 Correct 79 ms 25028 KB Output is correct
35 Correct 19 ms 6288 KB Output is correct
36 Correct 144 ms 21932 KB Output is correct
37 Correct 176 ms 44344 KB Output is correct
38 Correct 201 ms 42768 KB Output is correct
39 Correct 187 ms 20448 KB Output is correct
40 Correct 181 ms 23136 KB Output is correct
41 Correct 151 ms 24628 KB Output is correct
42 Correct 151 ms 23604 KB Output is correct
43 Correct 137 ms 22136 KB Output is correct
44 Correct 169 ms 35372 KB Output is correct
45 Correct 206 ms 32292 KB Output is correct
46 Correct 174 ms 37332 KB Output is correct
47 Correct 80 ms 20904 KB Output is correct
48 Correct 180 ms 39072 KB Output is correct
49 Correct 195 ms 40840 KB Output is correct
50 Correct 161 ms 35156 KB Output is correct
51 Correct 530 ms 80392 KB Output is correct
52 Correct 40 ms 11364 KB Output is correct
53 Correct 234 ms 48080 KB Output is correct
54 Correct 493 ms 84008 KB Output is correct
55 Correct 346 ms 70828 KB Output is correct
56 Correct 225 ms 49400 KB Output is correct
57 Correct 346 ms 55776 KB Output is correct
58 Correct 297 ms 52792 KB Output is correct
59 Correct 284 ms 51760 KB Output is correct
60 Correct 229 ms 49616 KB Output is correct
61 Correct 503 ms 77000 KB Output is correct
62 Correct 340 ms 64192 KB Output is correct
63 Correct 356 ms 70400 KB Output is correct
64 Correct 152 ms 49980 KB Output is correct
65 Correct 368 ms 76508 KB Output is correct
66 Correct 321 ms 70500 KB Output is correct
67 Correct 29 ms 6784 KB Output is correct
68 Correct 191 ms 24236 KB Output is correct
69 Correct 213 ms 36036 KB Output is correct
70 Correct 210 ms 38968 KB Output is correct
71 Correct 224 ms 43928 KB Output is correct
72 Correct 221 ms 46100 KB Output is correct
73 Correct 198 ms 40128 KB Output is correct
74 Correct 164 ms 25728 KB Output is correct
75 Correct 193 ms 28320 KB Output is correct
76 Correct 268 ms 35740 KB Output is correct
77 Correct 162 ms 40108 KB Output is correct
78 Correct 229 ms 40500 KB Output is correct
79 Correct 190 ms 41156 KB Output is correct
80 Correct 207 ms 43708 KB Output is correct
81 Correct 131 ms 41984 KB Output is correct
82 Correct 208 ms 45940 KB Output is correct
83 Correct 206 ms 45964 KB Output is correct
84 Correct 232 ms 45296 KB Output is correct
85 Correct 296 ms 45512 KB Output is correct
86 Correct 250 ms 47628 KB Output is correct
87 Correct 262 ms 45384 KB Output is correct
88 Correct 240 ms 27128 KB Output is correct
89 Correct 248 ms 41368 KB Output is correct
90 Correct 311 ms 44336 KB Output is correct
91 Correct 215 ms 45816 KB Output is correct
92 Correct 314 ms 44056 KB Output is correct
93 Correct 261 ms 37504 KB Output is correct
94 Correct 290 ms 41748 KB Output is correct
95 Correct 131 ms 45996 KB Output is correct
96 Correct 219 ms 46620 KB Output is correct
97 Correct 263 ms 47644 KB Output is correct
98 Correct 223 ms 47916 KB Output is correct
99 Correct 366 ms 45680 KB Output is correct
100 Correct 393 ms 66324 KB Output is correct
101 Correct 267 ms 46544 KB Output is correct
102 Correct 296 ms 51760 KB Output is correct
103 Correct 283 ms 50124 KB Output is correct
104 Correct 243 ms 50080 KB Output is correct
105 Correct 179 ms 46504 KB Output is correct
106 Correct 476 ms 59156 KB Output is correct
107 Correct 348 ms 45320 KB Output is correct
108 Correct 362 ms 61276 KB Output is correct
109 Correct 159 ms 48380 KB Output is correct
110 Correct 439 ms 51188 KB Output is correct
111 Correct 328 ms 64468 KB Output is correct