// Source: https://oj.uz/problem/view/COI15_zarulje
// Use sets and stacks :|
#include "bits/stdc++.h"
using namespace std;
#define s second
#define f first
#define pb push_back
typedef long long ll;
typedef pair<ll, ll> pii;
typedef vector<pii> vpii;
typedef vector<ll> vi;
#define FOR(i, a, b) for (ll i = (a); i<b; i++)
const ll N = 2e5 + 10;
const ll MOD = 1e9 + 7;
ll a[N];
ll ans[N];
ll aft[N];
ll prv[N];
vi add[N];
ll num_aft[N];
ll num_bef[N];
ll res = 1;
ll fact[N];
ll invfact[N];
ll binpow(ll x, ll n) { // binary exponentiation
x %= MOD;
ll cur = 1;
while (n > 0) {
if (n % 2==1) {cur = cur * x % MOD;}
x = x * x % MOD;
n /= 2;
}
return cur;
}
void calcChoose(ll n) { // preprocessing
fact[0]=1;
invfact[0]=1;
for (ll i = 1; i < n; i++) fact[i] = (fact[i-1]*i) % MOD;
for (ll i = 1; i < n; i++) invfact[i] = binpow(fact[i], MOD - 2) % MOD;
}
ll choose(ll n, ll k) { // calculate choose in O(1)
if (k == 0 || n == k) return 1;
return (fact[n] * ((invfact[k] * invfact[n - k]) % MOD)) % MOD;
}
vi pos[N];
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
calcChoose(N);
ll n, k;
cin >> n >> k;
FOR(i, 0, n) {
cin >> a[i];
pos[a[i]].pb(i);
}
stack<int> st; // find previous lesser => increasing
st.push(-1);
FOR(i, 0, n) {
while (st.size() > 1 && a[st.top()] >= a[i]) st.pop();
num_bef[i] = upper_bound(pos[a[i]].begin(), pos[a[i]].end(), i) - lower_bound(pos[a[i]].begin(), pos[a[i]].end(), st.top());
st.push(i);
}
while (!st.empty()) st.pop();
st.push(n+1);
for (int i = n-1; i>= 0; i--) {
while (st.size() > 1 && a[st.top()] >= a[i]) st.pop();
num_aft[i] = upper_bound(pos[a[i]].begin(), pos[a[i]].end(), st.top()) - lower_bound(pos[a[i]].begin(), pos[a[i]].end(), i);
st.push(i);
// cout << i << ' ' << num_aft[i] << num_bef[i] << endl;
}
// ll cur = 1;
// num_bef[0]=1;
// FOR(i, 1, n) {
// if (a[i] == a[i-1]) cur++;
// else cur = 1;
// num_bef[i]=cur;
// }
// cur = 1;
// num_aft[n-1]=1;
// for (ll i = n-2; i>= 0; i--) {
// if (a[i] == a[i+1]) cur++;
// else cur = 1;
// num_aft[i]=cur;
// }
stack<ll> end;
FOR(i, 0, n) { // non-decreasing stack to find previous <=
while (!end.empty() && a[end.top()] > a[i]) end.pop();
if (!end.empty()) add[end.top()].pb(i);
end.push(i);
}
for (auto val: add[0]) {
aft[a[val]] = num_aft[val];
}
stack<ll> beg; // strictly increasing
ans[0] = 1;
FOR(i, 1, n) {
// add (i - 1) to the beginning
while (!beg.empty() && a[beg.top()] >= a[i-1]) {
res = res*binpow(choose(aft[a[beg.top()]] + prv[a[beg.top()]], aft[a[beg.top()]]), MOD-2) % MOD;
prv[a[beg.top()]]=0;
beg.pop();
}
res = res*binpow(choose(aft[a[i-1]] + prv[a[i-1]], aft[a[i-1]]), MOD-2) % MOD;
prv[a[i-1]] = num_bef[i-1];
res = res*choose(aft[a[i-1]] + prv[a[i-1]], aft[a[i-1]]) % MOD;
beg.push(i-1);
// remove i from the end
res = res*binpow(choose(aft[a[i]] + prv[a[i]], aft[a[i]]), MOD-2) % MOD;
aft[a[i]]=0;
for (auto val: add[i]) {
res = res*binpow(choose(aft[a[val]] + prv[a[val]], prv[a[val]]), MOD-2) % MOD;
aft[a[val]] = num_aft[val];
res = res * choose(aft[a[val]] + prv[a[val]], prv[a[val]]) % MOD;
}
ans[i]=res;
}
while (k--) {
ll s;
cin >> s;
cout << ans[s-1] << '\n';
}
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
28 ms |
21084 KB |
Output is correct |
2 |
Correct |
28 ms |
19028 KB |
Output is correct |
3 |
Correct |
30 ms |
21584 KB |
Output is correct |
4 |
Correct |
29 ms |
19080 KB |
Output is correct |
5 |
Correct |
29 ms |
21072 KB |
Output is correct |
6 |
Correct |
28 ms |
19036 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
97 ms |
22832 KB |
Output is correct |
2 |
Correct |
193 ms |
26604 KB |
Output is correct |
3 |
Correct |
177 ms |
28476 KB |
Output is correct |
4 |
Correct |
168 ms |
28908 KB |
Output is correct |
5 |
Correct |
171 ms |
29520 KB |
Output is correct |
6 |
Correct |
171 ms |
29148 KB |
Output is correct |
7 |
Correct |
177 ms |
31600 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
28 ms |
21084 KB |
Output is correct |
2 |
Correct |
28 ms |
19028 KB |
Output is correct |
3 |
Correct |
30 ms |
21584 KB |
Output is correct |
4 |
Correct |
29 ms |
19080 KB |
Output is correct |
5 |
Correct |
29 ms |
21072 KB |
Output is correct |
6 |
Correct |
28 ms |
19036 KB |
Output is correct |
7 |
Correct |
97 ms |
22832 KB |
Output is correct |
8 |
Correct |
193 ms |
26604 KB |
Output is correct |
9 |
Correct |
177 ms |
28476 KB |
Output is correct |
10 |
Correct |
168 ms |
28908 KB |
Output is correct |
11 |
Correct |
171 ms |
29520 KB |
Output is correct |
12 |
Correct |
171 ms |
29148 KB |
Output is correct |
13 |
Correct |
177 ms |
31600 KB |
Output is correct |
14 |
Correct |
35 ms |
21380 KB |
Output is correct |
15 |
Correct |
109 ms |
24196 KB |
Output is correct |
16 |
Correct |
209 ms |
31776 KB |
Output is correct |
17 |
Correct |
199 ms |
29888 KB |
Output is correct |
18 |
Correct |
192 ms |
32120 KB |
Output is correct |
19 |
Correct |
183 ms |
28500 KB |
Output is correct |
20 |
Correct |
195 ms |
32156 KB |
Output is correct |
21 |
Correct |
215 ms |
33176 KB |
Output is correct |