답안 #855169

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
855169 2023-09-30T11:27:34 Z mbfibat Dynamic Diameter (CEOI19_diameter) C++17
31 / 100
5000 ms 373696 KB
#include <bits/stdc++.h>
 
using namespace std;
 
#define int long long
 
typedef pair<int, int> ii;
 
const int N = 1e5 + 11;
 
vector<ii> adj[N];
 
bool is_c[N];
 
int totChild = 0;
int nChild[N];
int parCentroid[N];
void cal_child(int u, int p = 0) {
	nChild[u] = 1;
	for (auto [v, w] : adj[u])
		if (!is_c[v] && v != p) {
			cal_child(v, u);
			nChild[u] += nChild[v];
		}	
}
int find_c(int u, int p = 0) {
	for (auto [v, w] : adj[u])
		if (v != p && !is_c[v] && nChild[v] > totChild / 2)
			return find_c(v, u);
	return u;	
}
 
// --------------------------------------------
 
unordered_map<int, int> dist;
 
struct Node {
	int val = 0, lazy = 0;
	Node* l = nullptr, *r = nullptr;
	Node(){}
};
 
// each centroid root will have a segtree
Node* Seg[N];
 
void build(Node *cur, int l, int r) {
	if (l == r) {
		cur -> val = dist[l];
		return;
	}
	cur -> l = new Node();
	cur -> r = new Node();
	int mi = (l + r) / 2;
	build(cur -> l, l, mi);
	build(cur -> r, mi + 1, r);
	cur -> val = max(cur -> l -> val, cur -> r -> val);
}
 
void diffuse(Node *cur, int l, int r) {
	if (cur -> lazy) {
		cur -> val += cur -> lazy;
		if (l != r) {
			cur -> l -> lazy += cur -> lazy;
			cur -> r -> lazy += cur -> lazy;
		}
		cur -> lazy = 0;
	}
}
 
void upd(Node *cur, int l, int r, int L, int R, int val) {
	diffuse(cur, l, r);
	if (r < L || R < l) return;
	if (L <= l && r <= R) {
		cur -> lazy += val;
		diffuse(cur, l, r);
		return;
	}
 
	int mi = (l + r) / 2;
	upd(cur -> l, l, mi, L, R, val);
	upd(cur -> r, mi + 1, r, L, R, val);
	cur -> val = max(cur -> l -> val, cur -> r -> val);
}
 
int query(Node *cur, int l, int r, int L, int R) {
	diffuse(cur, l, r);
	if (r < L || R < l) return 0;
	if (L <= l && r <= R) return cur -> val;
 
	int mi = (l + r) / 2;
	int val_l = query(cur -> l, l, mi, L, R);
	int val_r = query(cur -> r, mi + 1, r, L, R);
	return max(val_l, val_r);
}
 
int cur_root;
unordered_map<int, int> top;
map<ii, int> st, ed;
 
multiset<int> val_ms[N];
vector<ii> val_ord[N];
 
void dfs(int u, int d = 0, int p = 0) {
	st[ii(cur_root, u)] = ++top[cur_root];
	dist[top[cur_root]] = d;
 
	for (auto [v, w] : adj[u]) {
		if (is_c[v] || v == p) continue;
		dfs(v, d + w, u);
	}
	ed[ii(cur_root, u)] = top[cur_root];
}
 
// get max of all paths throught u
int sol[N];
multiset<int> ans;
 
void prep(int root) {
	// for each centroid root, create a segment tree, using pointers to create this egment tree
	// store a multiset for each edge from root
	// using st[u] and ed[u] to get the range and know, when updating a subtree, we know what edge from root does that subtree belong
 
	// 1. create segtree: get all nodes that are !is_c[u]
	cur_root = root;
 
	Seg[root] = new Node();
	dist[root] = 0;
	dfs(root);
	build(Seg[root], 1, top[root]);
 
 
	// 2. store multiset for each edge
	for (auto [v, w] : adj[root]) {
		if (is_c[v]) continue;
 
		int l = st[ii(root, v)], r = ed[ii(root, v)];
		int val = query(Seg[root], 1, top[root], l, r);
 
		val_ms[root].insert(val);
		val_ord[root].emplace_back(l, val);
	}
	sort(val_ord[root].begin(), val_ord[root].end());
 
	// offset for easier handling
	val_ms[root].insert(0); val_ms[root].insert(0);
	val_ord[root].emplace_back(top[root] + 1, 0);
 
	auto it = val_ms[root].rbegin();
	int v1 = *it; ++it; int v2 = *it;
	sol[root] = v1 + v2; ans.insert(sol[root]);
}
 
// --------------------------------------------
 
void centroid_decompose(int u, int p = 0) {
	cal_child(u); totChild = nChild[u];
	int c = find_c(u);
 
	parCentroid[c] = p;
	prep(c);
 
	is_c[c] = true;
	for (auto [v, w] : adj[c])
		if (!is_c[v])
			centroid_decompose(v, c);
}
 
void upd_edge(int root, int u1, int u2, int inc) {
	int u = ((st[ii(root, u1)] > st[ii(root, u2)]) ? u1 : u2);
	upd(Seg[root], 1, top[root], st[ii(root, u)], ed[ii(root, u)], inc);
 
	int p = upper_bound(val_ord[root].begin(), val_ord[root].end(), ii(st[ii(root, u)], 2e18)) - val_ord[root].begin() - 1;
	int l = val_ord[root][p].first, r = val_ord[root][p + 1].first - 1;
 
	int old_val = val_ord[root][p].second;
	int new_val = query(Seg[root], 1, top[root], l, r); 
 
	val_ms[root].erase(val_ms[root].find(old_val));
	val_ms[root].insert(new_val);
	val_ord[root][p].second = new_val;
 
	auto it = val_ms[root].rbegin();
	int v1 = *it; ++it; int v2 = *it;
 
	ans.erase(ans.find(sol[root]));
	sol[root] = v1 + v2; ans.insert(sol[root]);
 
	if (parCentroid[root])
		upd_edge(parCentroid[root], u1, u2, inc);
}
 
int32_t main() {
	ios::sync_with_stdio(false);
	cin.tie(0); cout.tie(0);
 
	int n, q, w; cin >> n >> q >> w;
 
	vector<int> W(n);
	vector<ii> edges;
	for (int i = 0; i < n - 1; i++) {
		int u, v, c; cin >> u >> v >> c;
 
		W[i] = c;
		edges.emplace_back(u, v);
 
		adj[u].emplace_back(v, c);
		adj[v].emplace_back(u, c);
	}
	centroid_decompose(1);
 
	int last = 0;
	while (q--) {
		int d, e; cin >> d >> e;
		d = (d + last) % (n - 1);
		e = (e + last) % w;		
 
		int dif = e - W[d]; W[d] = e;
 
		auto [u, v] = edges[d];
		if (top[u] < top[v]) swap(u, v);
 
		upd_edge(u, u, v, dif);
 
		last = *ans.rbegin();
		cout << last << '\n';
	}
} 
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 12892 KB Output is correct
2 Correct 2 ms 12932 KB Output is correct
3 Correct 3 ms 12892 KB Output is correct
4 Correct 2 ms 13144 KB Output is correct
5 Correct 2 ms 12892 KB Output is correct
6 Correct 3 ms 12892 KB Output is correct
7 Correct 2 ms 12892 KB Output is correct
8 Correct 3 ms 12892 KB Output is correct
9 Correct 3 ms 12884 KB Output is correct
10 Correct 3 ms 12888 KB Output is correct
11 Correct 2 ms 12892 KB Output is correct
12 Correct 3 ms 12892 KB Output is correct
13 Correct 3 ms 12892 KB Output is correct
14 Correct 3 ms 12892 KB Output is correct
15 Correct 3 ms 12892 KB Output is correct
16 Correct 3 ms 12892 KB Output is correct
17 Correct 3 ms 12892 KB Output is correct
18 Correct 3 ms 12892 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 12892 KB Output is correct
2 Correct 2 ms 12932 KB Output is correct
3 Correct 3 ms 12892 KB Output is correct
4 Correct 2 ms 13144 KB Output is correct
5 Correct 2 ms 12892 KB Output is correct
6 Correct 3 ms 12892 KB Output is correct
7 Correct 2 ms 12892 KB Output is correct
8 Correct 3 ms 12892 KB Output is correct
9 Correct 3 ms 12884 KB Output is correct
10 Correct 3 ms 12888 KB Output is correct
11 Correct 2 ms 12892 KB Output is correct
12 Correct 3 ms 12892 KB Output is correct
13 Correct 3 ms 12892 KB Output is correct
14 Correct 3 ms 12892 KB Output is correct
15 Correct 3 ms 12892 KB Output is correct
16 Correct 3 ms 12892 KB Output is correct
17 Correct 3 ms 12892 KB Output is correct
18 Correct 3 ms 12892 KB Output is correct
19 Correct 30 ms 14584 KB Output is correct
20 Correct 34 ms 14972 KB Output is correct
21 Correct 45 ms 14940 KB Output is correct
22 Correct 52 ms 15316 KB Output is correct
23 Correct 67 ms 22108 KB Output is correct
24 Correct 98 ms 24156 KB Output is correct
25 Correct 105 ms 25684 KB Output is correct
26 Correct 141 ms 27732 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 12892 KB Output is correct
2 Correct 2 ms 12892 KB Output is correct
3 Correct 3 ms 13144 KB Output is correct
4 Correct 12 ms 12892 KB Output is correct
5 Correct 52 ms 13216 KB Output is correct
6 Correct 2 ms 12888 KB Output is correct
7 Correct 3 ms 13144 KB Output is correct
8 Correct 3 ms 13144 KB Output is correct
9 Correct 5 ms 13148 KB Output is correct
10 Correct 20 ms 13352 KB Output is correct
11 Correct 85 ms 13724 KB Output is correct
12 Correct 11 ms 16732 KB Output is correct
13 Correct 11 ms 16732 KB Output is correct
14 Correct 13 ms 16732 KB Output is correct
15 Correct 37 ms 16732 KB Output is correct
16 Correct 144 ms 17236 KB Output is correct
17 Correct 247 ms 91692 KB Output is correct
18 Correct 252 ms 91556 KB Output is correct
19 Correct 267 ms 91852 KB Output is correct
20 Correct 322 ms 91828 KB Output is correct
21 Correct 657 ms 92768 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 11 ms 14940 KB Output is correct
2 Correct 56 ms 15076 KB Output is correct
3 Correct 216 ms 15736 KB Output is correct
4 Correct 418 ms 15348 KB Output is correct
5 Correct 90 ms 41424 KB Output is correct
6 Correct 191 ms 41564 KB Output is correct
7 Correct 627 ms 41676 KB Output is correct
8 Correct 1176 ms 42056 KB Output is correct
9 Correct 497 ms 181812 KB Output is correct
10 Correct 707 ms 182032 KB Output is correct
11 Correct 1714 ms 182792 KB Output is correct
12 Correct 2975 ms 182724 KB Output is correct
13 Correct 1082 ms 372884 KB Output is correct
14 Correct 1379 ms 373216 KB Output is correct
15 Correct 2736 ms 373480 KB Output is correct
16 Correct 4410 ms 373676 KB Output is correct
17 Execution timed out 5041 ms 373696 KB Time limit exceeded
18 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Execution timed out 5061 ms 287944 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 12892 KB Output is correct
2 Correct 2 ms 12932 KB Output is correct
3 Correct 3 ms 12892 KB Output is correct
4 Correct 2 ms 13144 KB Output is correct
5 Correct 2 ms 12892 KB Output is correct
6 Correct 3 ms 12892 KB Output is correct
7 Correct 2 ms 12892 KB Output is correct
8 Correct 3 ms 12892 KB Output is correct
9 Correct 3 ms 12884 KB Output is correct
10 Correct 3 ms 12888 KB Output is correct
11 Correct 2 ms 12892 KB Output is correct
12 Correct 3 ms 12892 KB Output is correct
13 Correct 3 ms 12892 KB Output is correct
14 Correct 3 ms 12892 KB Output is correct
15 Correct 3 ms 12892 KB Output is correct
16 Correct 3 ms 12892 KB Output is correct
17 Correct 3 ms 12892 KB Output is correct
18 Correct 3 ms 12892 KB Output is correct
19 Correct 30 ms 14584 KB Output is correct
20 Correct 34 ms 14972 KB Output is correct
21 Correct 45 ms 14940 KB Output is correct
22 Correct 52 ms 15316 KB Output is correct
23 Correct 67 ms 22108 KB Output is correct
24 Correct 98 ms 24156 KB Output is correct
25 Correct 105 ms 25684 KB Output is correct
26 Correct 141 ms 27732 KB Output is correct
27 Correct 2 ms 12892 KB Output is correct
28 Correct 2 ms 12892 KB Output is correct
29 Correct 3 ms 13144 KB Output is correct
30 Correct 12 ms 12892 KB Output is correct
31 Correct 52 ms 13216 KB Output is correct
32 Correct 2 ms 12888 KB Output is correct
33 Correct 3 ms 13144 KB Output is correct
34 Correct 3 ms 13144 KB Output is correct
35 Correct 5 ms 13148 KB Output is correct
36 Correct 20 ms 13352 KB Output is correct
37 Correct 85 ms 13724 KB Output is correct
38 Correct 11 ms 16732 KB Output is correct
39 Correct 11 ms 16732 KB Output is correct
40 Correct 13 ms 16732 KB Output is correct
41 Correct 37 ms 16732 KB Output is correct
42 Correct 144 ms 17236 KB Output is correct
43 Correct 247 ms 91692 KB Output is correct
44 Correct 252 ms 91556 KB Output is correct
45 Correct 267 ms 91852 KB Output is correct
46 Correct 322 ms 91828 KB Output is correct
47 Correct 657 ms 92768 KB Output is correct
48 Correct 11 ms 14940 KB Output is correct
49 Correct 56 ms 15076 KB Output is correct
50 Correct 216 ms 15736 KB Output is correct
51 Correct 418 ms 15348 KB Output is correct
52 Correct 90 ms 41424 KB Output is correct
53 Correct 191 ms 41564 KB Output is correct
54 Correct 627 ms 41676 KB Output is correct
55 Correct 1176 ms 42056 KB Output is correct
56 Correct 497 ms 181812 KB Output is correct
57 Correct 707 ms 182032 KB Output is correct
58 Correct 1714 ms 182792 KB Output is correct
59 Correct 2975 ms 182724 KB Output is correct
60 Correct 1082 ms 372884 KB Output is correct
61 Correct 1379 ms 373216 KB Output is correct
62 Correct 2736 ms 373480 KB Output is correct
63 Correct 4410 ms 373676 KB Output is correct
64 Execution timed out 5041 ms 373696 KB Time limit exceeded
65 Halted 0 ms 0 KB -