#include <bits/stdc++.h>
using namespace std;
#define int long long
typedef pair<int, int> ii;
const int N = 1e5 + 11;
vector<ii> adj[N];
bool is_c[N];
int totChild = 0;
int nChild[N];
int parCentroid[N];
void cal_child(int u, int p = 0) {
nChild[u] = 1;
for (auto [v, w] : adj[u])
if (!is_c[v] && v != p) {
cal_child(v, u);
nChild[u] += nChild[v];
}
}
int find_c(int u, int p = 0) {
for (auto [v, w] : adj[u])
if (v != p && !is_c[v] && nChild[v] > totChild / 2)
return find_c(v, u);
return u;
}
// --------------------------------------------
unordered_map<int, int> dist;
struct Node {
int val = 0, lazy = 0;
Node* l = nullptr, *r = nullptr;
Node(){}
};
// each centroid root will have a segtree
Node* Seg[N];
void build(Node *cur, int l, int r) {
if (l == r) {
cur -> val = dist[l];
return;
}
cur -> l = new Node();
cur -> r = new Node();
int mi = (l + r) / 2;
build(cur -> l, l, mi);
build(cur -> r, mi + 1, r);
cur -> val = max(cur -> l -> val, cur -> r -> val);
}
void diffuse(Node *cur, int l, int r) {
if (cur -> lazy) {
cur -> val += cur -> lazy;
if (l != r) {
cur -> l -> lazy += cur -> lazy;
cur -> r -> lazy += cur -> lazy;
}
cur -> lazy = 0;
}
}
void upd(Node *cur, int l, int r, int L, int R, int val) {
diffuse(cur, l, r);
if (r < L || R < l) return;
if (L <= l && r <= R) {
cur -> lazy += val;
diffuse(cur, l, r);
return;
}
int mi = (l + r) / 2;
upd(cur -> l, l, mi, L, R, val);
upd(cur -> r, mi + 1, r, L, R, val);
cur -> val = max(cur -> l -> val, cur -> r -> val);
}
int query(Node *cur, int l, int r, int L, int R) {
diffuse(cur, l, r);
if (r < L || R < l) return 0;
if (L <= l && r <= R) return cur -> val;
int mi = (l + r) / 2;
int val_l = query(cur -> l, l, mi, L, R);
int val_r = query(cur -> r, mi + 1, r, L, R);
return max(val_l, val_r);
}
int cur_root;
unordered_map<int, int> top;
map<ii, int> st, ed;
multiset<int> val_ms[N];
vector<ii> val_ord[N];
void dfs(int u, int d = 0, int p = 0) {
st[ii(cur_root, u)] = ++top[cur_root];
dist[top[cur_root]] = d;
// cerr << "dist from cur_root to u: " << cur_root << ' ' << u << ' ' << d << " - with pos: " << top[cur_root] << '\n';
for (auto [v, w] : adj[u]) {
if (is_c[v] || v == p) continue;
dfs(v, d + w, u);
}
ed[ii(cur_root, u)] = top[cur_root];
}
// get max of all paths throught u
int sol[N];
multiset<int> ans;
void prep(int root) {
// for each centroid root, create a segment tree, using pointers to create this egment tree
// store a multiset for each edge from root
// using st[u] and ed[u] to get the range and know, when updating a subtree, we know what edge from root does that subtree belong
// cerr << "root: " << root << '\n';
// 1. create segtree: get all nodes that are !is_c[u]
cur_root = root;
Seg[root] = new Node();
dist[root] = 0;
dfs(root);
build(Seg[root], 1, top[root]);
// 2. store multiset for each edge
for (auto [v, w] : adj[root]) {
if (is_c[v]) continue;
int l = st[ii(root, v)], r = ed[ii(root, v)];
int val = query(Seg[root], 1, top[root], l, r);
// cerr << "range get and query: " << l << ' ' << r << ' ' << val << '\n';
val_ms[root].insert(val);
val_ord[root].emplace_back(l, val);
}
sort(val_ord[root].begin(), val_ord[root].end());
// offset for easier handling
val_ms[root].insert(0); val_ms[root].insert(0);
val_ord[root].emplace_back(top[root] + 1, 0);
auto it = val_ms[root].rbegin();
int v1 = *it; ++it; int v2 = *it;
sol[root] = v1 + v2; ans.insert(sol[root]);
}
// --------------------------------------------
void centroid_decompose(int u, int p = 0) {
cal_child(u); totChild = nChild[u];
int c = find_c(u);
parCentroid[c] = p;
prep(c);
is_c[c] = true;
for (auto [v, w] : adj[c])
if (!is_c[v])
centroid_decompose(v, c);
}
void upd_edge(int root, int u, int inc) {
// cerr << '?' << root << ' ' << u << ' ' << inc << '\n';
// update on tree
// for (auto [pos, v] : val_ord[root]) {
// cerr << pos << ' ' << v << '\n';
// }
upd(Seg[root], 1, top[root], st[ii(root, u)], ed[ii(root, u)], inc);
// cerr << "range of subtree: " << st[ii(root, u)] << " " << ed[ii(root, u)] << '\n';
int p = upper_bound(val_ord[root].begin(), val_ord[root].end(), ii(st[ii(root, u)], 2e18)) - val_ord[root].begin() - 1;
int l = val_ord[root][p].first, r = val_ord[root][p + 1].first - 1;
// cerr << "range of root edge: " << l << " " << r << '\n';
int old_val = val_ord[root][p].second;
int new_val = query(Seg[root], 1, top[root], l, r);
// cerr << "old val and new val: " << old_val << ' ' << new_val << '\n';
val_ms[root].erase(val_ms[root].find(old_val));
val_ms[root].insert(new_val);
val_ord[root][p].second = new_val;
auto it = val_ms[root].rbegin();
int v1 = *it; ++it; int v2 = *it;
// cerr << "two largest paths: " << v1 << ' ' << v2 << '\n';
ans.erase(ans.find(sol[root]));
sol[root] = v1 + v2; ans.insert(sol[root]);
if (parCentroid[root])
upd_edge(parCentroid[root], u, inc);
}
int32_t main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
int n, q, w; cin >> n >> q >> w;
vector<int> W(n);
vector<ii> edges;
for (int i = 0; i < n - 1; i++) {
int u, v, c; cin >> u >> v >> c;
W[i] = c;
edges.emplace_back(u, v);
adj[u].emplace_back(v, c);
adj[v].emplace_back(u, c);
}
centroid_decompose(1);
int last = 0;
while (q--) {
int d, e; cin >> d >> e;
d = (d + last) % (n - 1);
e = (e + last) % w;
int dif = e - W[d]; W[d] = e;
auto [u, v] = edges[d];
if (top[u] < top[v]) swap(u, v);
// cerr << "dif: " << dif << '\n';
// cerr << "u, v and top[u], top[v]: " << u << ' ' << v << ' ' << top[u] << ' ' << top[v] << '\n';
upd_edge(u, v, dif);
// cerr << "all best paths: ";
// for (int v : ans)
// cerr << v << ' ';
// cerr << '\n';
last = *ans.rbegin();
cout << last << '\n';
}
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
2 ms |
12892 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
2 ms |
12892 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
3 ms |
12892 KB |
Output is correct |
2 |
Correct |
3 ms |
12892 KB |
Output is correct |
3 |
Correct |
3 ms |
12724 KB |
Output is correct |
4 |
Correct |
11 ms |
13148 KB |
Output is correct |
5 |
Correct |
51 ms |
14092 KB |
Output is correct |
6 |
Correct |
2 ms |
12888 KB |
Output is correct |
7 |
Correct |
3 ms |
13148 KB |
Output is correct |
8 |
Correct |
3 ms |
13148 KB |
Output is correct |
9 |
Correct |
5 ms |
13148 KB |
Output is correct |
10 |
Correct |
18 ms |
13400 KB |
Output is correct |
11 |
Correct |
79 ms |
14420 KB |
Output is correct |
12 |
Correct |
11 ms |
16728 KB |
Output is correct |
13 |
Correct |
11 ms |
16728 KB |
Output is correct |
14 |
Correct |
14 ms |
16792 KB |
Output is correct |
15 |
Correct |
34 ms |
16988 KB |
Output is correct |
16 |
Correct |
132 ms |
18260 KB |
Output is correct |
17 |
Correct |
264 ms |
92928 KB |
Output is correct |
18 |
Correct |
264 ms |
92716 KB |
Output is correct |
19 |
Correct |
281 ms |
92924 KB |
Output is correct |
20 |
Correct |
316 ms |
93112 KB |
Output is correct |
21 |
Correct |
612 ms |
94984 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
12 ms |
14940 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Execution timed out |
5022 ms |
291952 KB |
Time limit exceeded |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
2 ms |
12892 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |