답안 #852449

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
852449 2023-09-21T20:01:53 Z dutinmeow Sprinkler (JOI22_sprinkler) C++17
100 / 100
1257 ms 63956 KB
#include <bits/stdc++.h>

#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif


#include <utility>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }
    friend std::ostream &operator<<(std::ostream& os, const mint& rhs) { 
        return os << rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }
    friend std::ostream &operator<<(std::ostream& os, const mint& rhs) { 
        return os << rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

namespace std {

template<class Fun>
class y_combinator_result {
    Fun fun_;
public:
    template<class T>
    explicit y_combinator_result(T &&fun): fun_(std::forward<T>(fun)) {}

    template<class ...Args>
    decltype(auto) operator()(Args &&...args) {
        return fun_(std::ref(*this), std::forward<Args>(args)...);
    }
};

template<class Fun>
decltype(auto) y_combinator(Fun &&fun) {
    return y_combinator_result<std::decay_t<Fun>>(std::forward<Fun>(fun));
}

} // namespace std

using mint = atcoder::modint;

const int D = 40;

int main() {
	int n, l;
	std::cin >> n >> l;
	mint::set_mod(l);
	std::vector<std::vector<int>> t(n);
	for (int i = 0; i < n - 1 ; i++) {
		int u, v;
		std::cin >> u >> v;
		u--, v--;
		t[u].push_back(v);
		t[v].push_back(u);
	}

	std::vector<mint> a(n);
	for (auto &x : a) {
		int _x;
		std::cin >> _x;
		x = _x;
	}

	std::vector<int> p(n);
	p[0] = -1;

	std::y_combinator([&](auto self, int u) -> void {
		for (int v : t[u]) {
			if (v == p[u])
				continue;
			p[v] = u;
			self(v);
		}
	})(0);

	std::vector<std::array<mint, D + 1>> b(n);
	std::for_each(b.begin(), b.end(), [](auto &t) { t.fill(1); });

	int q;
	std::cin >> q;
	while (q--) {
		int tt; 
		std::cin >> tt;
		if (tt == 1) {
			int x, d, w;
			std::cin >> x >> d >> w;
			x--;
			for (int c = 0; c <= d && x != -1; c++, x = p[x]) {
				if (x == 0) {
					for (int i = 0; i <= d - c; i++)
						b[x][i] *= w;
				} else {
					if (d - c - 1 >= 0)
						b[x][d - c - 1] *= w;
					b[x][d - c] *= w;
				}
			}
		} else {
			int x;
			std::cin >> x;
			x--;
			mint r = a[x];
			for (int c = 0; c <= D && x != -1; c++, x = p[x])
				r *= b[x][c];
			std::cout << r.val() << '\n';
		}
	}
}
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 0 ms 344 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 4 ms 604 KB Output is correct
5 Correct 2 ms 600 KB Output is correct
6 Correct 2 ms 600 KB Output is correct
7 Correct 2 ms 600 KB Output is correct
8 Correct 3 ms 604 KB Output is correct
9 Correct 1 ms 344 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 2 ms 344 KB Output is correct
12 Correct 1 ms 344 KB Output is correct
13 Correct 2 ms 344 KB Output is correct
14 Correct 1 ms 344 KB Output is correct
15 Correct 2 ms 348 KB Output is correct
16 Correct 1 ms 344 KB Output is correct
17 Correct 2 ms 600 KB Output is correct
18 Correct 1 ms 344 KB Output is correct
19 Correct 1 ms 344 KB Output is correct
20 Correct 1 ms 348 KB Output is correct
21 Correct 2 ms 344 KB Output is correct
22 Correct 1 ms 440 KB Output is correct
23 Correct 1 ms 344 KB Output is correct
24 Correct 1 ms 344 KB Output is correct
25 Correct 2 ms 444 KB Output is correct
26 Correct 2 ms 348 KB Output is correct
27 Correct 2 ms 344 KB Output is correct
28 Correct 2 ms 348 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1004 ms 56880 KB Output is correct
3 Correct 578 ms 57660 KB Output is correct
4 Correct 887 ms 61840 KB Output is correct
5 Correct 833 ms 57268 KB Output is correct
6 Correct 715 ms 56644 KB Output is correct
7 Correct 761 ms 57424 KB Output is correct
8 Correct 664 ms 57936 KB Output is correct
9 Correct 1215 ms 63884 KB Output is correct
10 Correct 646 ms 63824 KB Output is correct
11 Correct 1042 ms 56916 KB Output is correct
12 Correct 570 ms 57408 KB Output is correct
13 Correct 548 ms 57488 KB Output is correct
14 Correct 517 ms 58188 KB Output is correct
15 Correct 551 ms 57308 KB Output is correct
16 Correct 527 ms 58072 KB Output is correct
17 Correct 532 ms 58448 KB Output is correct
18 Correct 1 ms 344 KB Output is correct
19 Correct 2 ms 348 KB Output is correct
20 Correct 2 ms 344 KB Output is correct
21 Correct 1 ms 348 KB Output is correct
22 Correct 1 ms 344 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1004 ms 56880 KB Output is correct
3 Correct 578 ms 57660 KB Output is correct
4 Correct 887 ms 61840 KB Output is correct
5 Correct 833 ms 57268 KB Output is correct
6 Correct 715 ms 56644 KB Output is correct
7 Correct 761 ms 57424 KB Output is correct
8 Correct 664 ms 57936 KB Output is correct
9 Correct 1215 ms 63884 KB Output is correct
10 Correct 646 ms 63824 KB Output is correct
11 Correct 1042 ms 56916 KB Output is correct
12 Correct 570 ms 57408 KB Output is correct
13 Correct 548 ms 57488 KB Output is correct
14 Correct 517 ms 58188 KB Output is correct
15 Correct 551 ms 57308 KB Output is correct
16 Correct 527 ms 58072 KB Output is correct
17 Correct 532 ms 58448 KB Output is correct
18 Correct 1 ms 344 KB Output is correct
19 Correct 2 ms 348 KB Output is correct
20 Correct 2 ms 344 KB Output is correct
21 Correct 1 ms 348 KB Output is correct
22 Correct 1 ms 344 KB Output is correct
23 Correct 0 ms 344 KB Output is correct
24 Correct 994 ms 56916 KB Output is correct
25 Correct 579 ms 57424 KB Output is correct
26 Correct 924 ms 63956 KB Output is correct
27 Correct 775 ms 56912 KB Output is correct
28 Correct 695 ms 57168 KB Output is correct
29 Correct 673 ms 56912 KB Output is correct
30 Correct 664 ms 57904 KB Output is correct
31 Correct 1230 ms 61804 KB Output is correct
32 Correct 625 ms 63760 KB Output is correct
33 Correct 1022 ms 56896 KB Output is correct
34 Correct 596 ms 57364 KB Output is correct
35 Correct 2 ms 344 KB Output is correct
36 Correct 1 ms 344 KB Output is correct
37 Correct 1 ms 344 KB Output is correct
38 Correct 2 ms 344 KB Output is correct
39 Correct 2 ms 344 KB Output is correct
40 Correct 2 ms 344 KB Output is correct
41 Correct 1 ms 344 KB Output is correct
42 Correct 1 ms 344 KB Output is correct
43 Correct 1 ms 344 KB Output is correct
44 Correct 2 ms 344 KB Output is correct
45 Correct 1 ms 348 KB Output is correct
46 Correct 1 ms 344 KB Output is correct
47 Correct 1 ms 344 KB Output is correct
48 Correct 1 ms 344 KB Output is correct
49 Correct 1 ms 344 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1235 ms 61044 KB Output is correct
3 Correct 1184 ms 60004 KB Output is correct
4 Correct 1055 ms 60084 KB Output is correct
5 Correct 825 ms 54468 KB Output is correct
6 Correct 711 ms 54500 KB Output is correct
7 Correct 697 ms 54368 KB Output is correct
8 Correct 689 ms 55288 KB Output is correct
9 Correct 1257 ms 58976 KB Output is correct
10 Correct 1113 ms 60928 KB Output is correct
11 Correct 1027 ms 53632 KB Output is correct
12 Correct 740 ms 54704 KB Output is correct
13 Correct 605 ms 55516 KB Output is correct
14 Correct 618 ms 56152 KB Output is correct
15 Correct 2 ms 344 KB Output is correct
16 Correct 1 ms 344 KB Output is correct
17 Correct 1 ms 344 KB Output is correct
18 Correct 1 ms 344 KB Output is correct
19 Correct 1 ms 344 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 1252 ms 61520 KB Output is correct
3 Correct 1141 ms 58664 KB Output is correct
4 Correct 1006 ms 59912 KB Output is correct
5 Correct 881 ms 55908 KB Output is correct
6 Correct 720 ms 55724 KB Output is correct
7 Correct 679 ms 55640 KB Output is correct
8 Correct 629 ms 56004 KB Output is correct
9 Correct 1244 ms 63324 KB Output is correct
10 Correct 1156 ms 61740 KB Output is correct
11 Correct 999 ms 56452 KB Output is correct
12 Correct 753 ms 54868 KB Output is correct
13 Correct 626 ms 55788 KB Output is correct
14 Correct 599 ms 56192 KB Output is correct
15 Correct 2 ms 344 KB Output is correct
16 Correct 1 ms 344 KB Output is correct
17 Correct 2 ms 348 KB Output is correct
18 Correct 1 ms 344 KB Output is correct
19 Correct 2 ms 344 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 0 ms 344 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 4 ms 604 KB Output is correct
5 Correct 2 ms 600 KB Output is correct
6 Correct 2 ms 600 KB Output is correct
7 Correct 2 ms 600 KB Output is correct
8 Correct 3 ms 604 KB Output is correct
9 Correct 1 ms 344 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 2 ms 344 KB Output is correct
12 Correct 1 ms 344 KB Output is correct
13 Correct 2 ms 344 KB Output is correct
14 Correct 1 ms 344 KB Output is correct
15 Correct 2 ms 348 KB Output is correct
16 Correct 1 ms 344 KB Output is correct
17 Correct 2 ms 600 KB Output is correct
18 Correct 1 ms 344 KB Output is correct
19 Correct 1 ms 344 KB Output is correct
20 Correct 1 ms 348 KB Output is correct
21 Correct 2 ms 344 KB Output is correct
22 Correct 1 ms 440 KB Output is correct
23 Correct 1 ms 344 KB Output is correct
24 Correct 1 ms 344 KB Output is correct
25 Correct 2 ms 444 KB Output is correct
26 Correct 2 ms 348 KB Output is correct
27 Correct 2 ms 344 KB Output is correct
28 Correct 2 ms 348 KB Output is correct
29 Correct 1 ms 344 KB Output is correct
30 Correct 1004 ms 56880 KB Output is correct
31 Correct 578 ms 57660 KB Output is correct
32 Correct 887 ms 61840 KB Output is correct
33 Correct 833 ms 57268 KB Output is correct
34 Correct 715 ms 56644 KB Output is correct
35 Correct 761 ms 57424 KB Output is correct
36 Correct 664 ms 57936 KB Output is correct
37 Correct 1215 ms 63884 KB Output is correct
38 Correct 646 ms 63824 KB Output is correct
39 Correct 1042 ms 56916 KB Output is correct
40 Correct 570 ms 57408 KB Output is correct
41 Correct 548 ms 57488 KB Output is correct
42 Correct 517 ms 58188 KB Output is correct
43 Correct 551 ms 57308 KB Output is correct
44 Correct 527 ms 58072 KB Output is correct
45 Correct 532 ms 58448 KB Output is correct
46 Correct 1 ms 344 KB Output is correct
47 Correct 2 ms 348 KB Output is correct
48 Correct 2 ms 344 KB Output is correct
49 Correct 1 ms 348 KB Output is correct
50 Correct 1 ms 344 KB Output is correct
51 Correct 0 ms 344 KB Output is correct
52 Correct 994 ms 56916 KB Output is correct
53 Correct 579 ms 57424 KB Output is correct
54 Correct 924 ms 63956 KB Output is correct
55 Correct 775 ms 56912 KB Output is correct
56 Correct 695 ms 57168 KB Output is correct
57 Correct 673 ms 56912 KB Output is correct
58 Correct 664 ms 57904 KB Output is correct
59 Correct 1230 ms 61804 KB Output is correct
60 Correct 625 ms 63760 KB Output is correct
61 Correct 1022 ms 56896 KB Output is correct
62 Correct 596 ms 57364 KB Output is correct
63 Correct 2 ms 344 KB Output is correct
64 Correct 1 ms 344 KB Output is correct
65 Correct 1 ms 344 KB Output is correct
66 Correct 2 ms 344 KB Output is correct
67 Correct 2 ms 344 KB Output is correct
68 Correct 2 ms 344 KB Output is correct
69 Correct 1 ms 344 KB Output is correct
70 Correct 1 ms 344 KB Output is correct
71 Correct 1 ms 344 KB Output is correct
72 Correct 2 ms 344 KB Output is correct
73 Correct 1 ms 348 KB Output is correct
74 Correct 1 ms 344 KB Output is correct
75 Correct 1 ms 344 KB Output is correct
76 Correct 1 ms 344 KB Output is correct
77 Correct 1 ms 344 KB Output is correct
78 Correct 1 ms 344 KB Output is correct
79 Correct 1235 ms 61044 KB Output is correct
80 Correct 1184 ms 60004 KB Output is correct
81 Correct 1055 ms 60084 KB Output is correct
82 Correct 825 ms 54468 KB Output is correct
83 Correct 711 ms 54500 KB Output is correct
84 Correct 697 ms 54368 KB Output is correct
85 Correct 689 ms 55288 KB Output is correct
86 Correct 1257 ms 58976 KB Output is correct
87 Correct 1113 ms 60928 KB Output is correct
88 Correct 1027 ms 53632 KB Output is correct
89 Correct 740 ms 54704 KB Output is correct
90 Correct 605 ms 55516 KB Output is correct
91 Correct 618 ms 56152 KB Output is correct
92 Correct 2 ms 344 KB Output is correct
93 Correct 1 ms 344 KB Output is correct
94 Correct 1 ms 344 KB Output is correct
95 Correct 1 ms 344 KB Output is correct
96 Correct 1 ms 344 KB Output is correct
97 Correct 0 ms 344 KB Output is correct
98 Correct 1252 ms 61520 KB Output is correct
99 Correct 1141 ms 58664 KB Output is correct
100 Correct 1006 ms 59912 KB Output is correct
101 Correct 881 ms 55908 KB Output is correct
102 Correct 720 ms 55724 KB Output is correct
103 Correct 679 ms 55640 KB Output is correct
104 Correct 629 ms 56004 KB Output is correct
105 Correct 1244 ms 63324 KB Output is correct
106 Correct 1156 ms 61740 KB Output is correct
107 Correct 999 ms 56452 KB Output is correct
108 Correct 753 ms 54868 KB Output is correct
109 Correct 626 ms 55788 KB Output is correct
110 Correct 599 ms 56192 KB Output is correct
111 Correct 2 ms 344 KB Output is correct
112 Correct 1 ms 344 KB Output is correct
113 Correct 2 ms 348 KB Output is correct
114 Correct 1 ms 344 KB Output is correct
115 Correct 2 ms 344 KB Output is correct
116 Correct 992 ms 54720 KB Output is correct
117 Correct 824 ms 57456 KB Output is correct
118 Correct 1166 ms 63804 KB Output is correct
119 Correct 876 ms 57020 KB Output is correct
120 Correct 719 ms 56740 KB Output is correct
121 Correct 778 ms 57872 KB Output is correct
122 Correct 671 ms 57796 KB Output is correct
123 Correct 1255 ms 62800 KB Output is correct
124 Correct 1242 ms 61424 KB Output is correct
125 Correct 1010 ms 56036 KB Output is correct
126 Correct 822 ms 57556 KB Output is correct
127 Correct 799 ms 57808 KB Output is correct
128 Correct 677 ms 58352 KB Output is correct
129 Correct 671 ms 59012 KB Output is correct