#include <bits/stdc++.h>
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <utility>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m < 2^31`
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
// y_max < m * (n + 1)
// floor(y_max / m) <= n
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
friend std::ostream &operator<<(std::ostream& os, const mint& rhs) {
return os << rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
friend std::ostream &operator<<(std::ostream& os, const mint& rhs) {
return os << rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
namespace std {
template<class Fun>
class y_combinator_result {
Fun fun_;
public:
template<class T>
explicit y_combinator_result(T &&fun): fun_(std::forward<T>(fun)) {}
template<class ...Args>
decltype(auto) operator()(Args &&...args) {
return fun_(std::ref(*this), std::forward<Args>(args)...);
}
};
template<class Fun>
decltype(auto) y_combinator(Fun &&fun) {
return y_combinator_result<std::decay_t<Fun>>(std::forward<Fun>(fun));
}
} // namespace std
using mint = atcoder::modint;
const int D = 40;
int main() {
int n, l;
std::cin >> n >> l;
mint::set_mod(l);
std::vector<std::vector<int>> t(n);
for (int i = 0; i < n - 1 ; i++) {
int u, v;
std::cin >> u >> v;
u--, v--;
t[u].push_back(v);
t[v].push_back(u);
}
std::vector<mint> a(n);
for (auto &x : a) {
int _x;
std::cin >> _x;
x = _x;
}
std::vector<int> p(n);
p[0] = -1;
std::y_combinator([&](auto self, int u) -> void {
for (int v : t[u]) {
if (v == p[u])
continue;
p[v] = u;
self(v);
}
})(0);
std::vector<std::array<mint, D + 1>> b(n);
std::for_each(b.begin(), b.end(), [](auto &t) { t.fill(1); });
int q;
std::cin >> q;
while (q--) {
int tt;
std::cin >> tt;
if (tt == 1) {
int x, d, w;
std::cin >> x >> d >> w;
x--;
for (int c = 0; c <= d && x != -1; c++, x = p[x]) {
if (x == 0) {
for (int i = 0; i <= d - c; i++)
b[x][i] *= w;
} else {
if (d - c - 1 >= 0)
b[x][d - c - 1] *= w;
b[x][d - c] *= w;
}
}
} else {
int x;
std::cin >> x;
x--;
mint r = a[x];
for (int c = 0; c <= D && x != -1; c++, x = p[x])
r *= b[x][c];
std::cout << r.val() << '\n';
}
}
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
344 KB |
Output is correct |
2 |
Correct |
0 ms |
344 KB |
Output is correct |
3 |
Correct |
1 ms |
348 KB |
Output is correct |
4 |
Correct |
4 ms |
604 KB |
Output is correct |
5 |
Correct |
2 ms |
600 KB |
Output is correct |
6 |
Correct |
2 ms |
600 KB |
Output is correct |
7 |
Correct |
2 ms |
600 KB |
Output is correct |
8 |
Correct |
3 ms |
604 KB |
Output is correct |
9 |
Correct |
1 ms |
344 KB |
Output is correct |
10 |
Correct |
1 ms |
348 KB |
Output is correct |
11 |
Correct |
2 ms |
344 KB |
Output is correct |
12 |
Correct |
1 ms |
344 KB |
Output is correct |
13 |
Correct |
2 ms |
344 KB |
Output is correct |
14 |
Correct |
1 ms |
344 KB |
Output is correct |
15 |
Correct |
2 ms |
348 KB |
Output is correct |
16 |
Correct |
1 ms |
344 KB |
Output is correct |
17 |
Correct |
2 ms |
600 KB |
Output is correct |
18 |
Correct |
1 ms |
344 KB |
Output is correct |
19 |
Correct |
1 ms |
344 KB |
Output is correct |
20 |
Correct |
1 ms |
348 KB |
Output is correct |
21 |
Correct |
2 ms |
344 KB |
Output is correct |
22 |
Correct |
1 ms |
440 KB |
Output is correct |
23 |
Correct |
1 ms |
344 KB |
Output is correct |
24 |
Correct |
1 ms |
344 KB |
Output is correct |
25 |
Correct |
2 ms |
444 KB |
Output is correct |
26 |
Correct |
2 ms |
348 KB |
Output is correct |
27 |
Correct |
2 ms |
344 KB |
Output is correct |
28 |
Correct |
2 ms |
348 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
344 KB |
Output is correct |
2 |
Correct |
1004 ms |
56880 KB |
Output is correct |
3 |
Correct |
578 ms |
57660 KB |
Output is correct |
4 |
Correct |
887 ms |
61840 KB |
Output is correct |
5 |
Correct |
833 ms |
57268 KB |
Output is correct |
6 |
Correct |
715 ms |
56644 KB |
Output is correct |
7 |
Correct |
761 ms |
57424 KB |
Output is correct |
8 |
Correct |
664 ms |
57936 KB |
Output is correct |
9 |
Correct |
1215 ms |
63884 KB |
Output is correct |
10 |
Correct |
646 ms |
63824 KB |
Output is correct |
11 |
Correct |
1042 ms |
56916 KB |
Output is correct |
12 |
Correct |
570 ms |
57408 KB |
Output is correct |
13 |
Correct |
548 ms |
57488 KB |
Output is correct |
14 |
Correct |
517 ms |
58188 KB |
Output is correct |
15 |
Correct |
551 ms |
57308 KB |
Output is correct |
16 |
Correct |
527 ms |
58072 KB |
Output is correct |
17 |
Correct |
532 ms |
58448 KB |
Output is correct |
18 |
Correct |
1 ms |
344 KB |
Output is correct |
19 |
Correct |
2 ms |
348 KB |
Output is correct |
20 |
Correct |
2 ms |
344 KB |
Output is correct |
21 |
Correct |
1 ms |
348 KB |
Output is correct |
22 |
Correct |
1 ms |
344 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
344 KB |
Output is correct |
2 |
Correct |
1004 ms |
56880 KB |
Output is correct |
3 |
Correct |
578 ms |
57660 KB |
Output is correct |
4 |
Correct |
887 ms |
61840 KB |
Output is correct |
5 |
Correct |
833 ms |
57268 KB |
Output is correct |
6 |
Correct |
715 ms |
56644 KB |
Output is correct |
7 |
Correct |
761 ms |
57424 KB |
Output is correct |
8 |
Correct |
664 ms |
57936 KB |
Output is correct |
9 |
Correct |
1215 ms |
63884 KB |
Output is correct |
10 |
Correct |
646 ms |
63824 KB |
Output is correct |
11 |
Correct |
1042 ms |
56916 KB |
Output is correct |
12 |
Correct |
570 ms |
57408 KB |
Output is correct |
13 |
Correct |
548 ms |
57488 KB |
Output is correct |
14 |
Correct |
517 ms |
58188 KB |
Output is correct |
15 |
Correct |
551 ms |
57308 KB |
Output is correct |
16 |
Correct |
527 ms |
58072 KB |
Output is correct |
17 |
Correct |
532 ms |
58448 KB |
Output is correct |
18 |
Correct |
1 ms |
344 KB |
Output is correct |
19 |
Correct |
2 ms |
348 KB |
Output is correct |
20 |
Correct |
2 ms |
344 KB |
Output is correct |
21 |
Correct |
1 ms |
348 KB |
Output is correct |
22 |
Correct |
1 ms |
344 KB |
Output is correct |
23 |
Correct |
0 ms |
344 KB |
Output is correct |
24 |
Correct |
994 ms |
56916 KB |
Output is correct |
25 |
Correct |
579 ms |
57424 KB |
Output is correct |
26 |
Correct |
924 ms |
63956 KB |
Output is correct |
27 |
Correct |
775 ms |
56912 KB |
Output is correct |
28 |
Correct |
695 ms |
57168 KB |
Output is correct |
29 |
Correct |
673 ms |
56912 KB |
Output is correct |
30 |
Correct |
664 ms |
57904 KB |
Output is correct |
31 |
Correct |
1230 ms |
61804 KB |
Output is correct |
32 |
Correct |
625 ms |
63760 KB |
Output is correct |
33 |
Correct |
1022 ms |
56896 KB |
Output is correct |
34 |
Correct |
596 ms |
57364 KB |
Output is correct |
35 |
Correct |
2 ms |
344 KB |
Output is correct |
36 |
Correct |
1 ms |
344 KB |
Output is correct |
37 |
Correct |
1 ms |
344 KB |
Output is correct |
38 |
Correct |
2 ms |
344 KB |
Output is correct |
39 |
Correct |
2 ms |
344 KB |
Output is correct |
40 |
Correct |
2 ms |
344 KB |
Output is correct |
41 |
Correct |
1 ms |
344 KB |
Output is correct |
42 |
Correct |
1 ms |
344 KB |
Output is correct |
43 |
Correct |
1 ms |
344 KB |
Output is correct |
44 |
Correct |
2 ms |
344 KB |
Output is correct |
45 |
Correct |
1 ms |
348 KB |
Output is correct |
46 |
Correct |
1 ms |
344 KB |
Output is correct |
47 |
Correct |
1 ms |
344 KB |
Output is correct |
48 |
Correct |
1 ms |
344 KB |
Output is correct |
49 |
Correct |
1 ms |
344 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
344 KB |
Output is correct |
2 |
Correct |
1235 ms |
61044 KB |
Output is correct |
3 |
Correct |
1184 ms |
60004 KB |
Output is correct |
4 |
Correct |
1055 ms |
60084 KB |
Output is correct |
5 |
Correct |
825 ms |
54468 KB |
Output is correct |
6 |
Correct |
711 ms |
54500 KB |
Output is correct |
7 |
Correct |
697 ms |
54368 KB |
Output is correct |
8 |
Correct |
689 ms |
55288 KB |
Output is correct |
9 |
Correct |
1257 ms |
58976 KB |
Output is correct |
10 |
Correct |
1113 ms |
60928 KB |
Output is correct |
11 |
Correct |
1027 ms |
53632 KB |
Output is correct |
12 |
Correct |
740 ms |
54704 KB |
Output is correct |
13 |
Correct |
605 ms |
55516 KB |
Output is correct |
14 |
Correct |
618 ms |
56152 KB |
Output is correct |
15 |
Correct |
2 ms |
344 KB |
Output is correct |
16 |
Correct |
1 ms |
344 KB |
Output is correct |
17 |
Correct |
1 ms |
344 KB |
Output is correct |
18 |
Correct |
1 ms |
344 KB |
Output is correct |
19 |
Correct |
1 ms |
344 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
344 KB |
Output is correct |
2 |
Correct |
1252 ms |
61520 KB |
Output is correct |
3 |
Correct |
1141 ms |
58664 KB |
Output is correct |
4 |
Correct |
1006 ms |
59912 KB |
Output is correct |
5 |
Correct |
881 ms |
55908 KB |
Output is correct |
6 |
Correct |
720 ms |
55724 KB |
Output is correct |
7 |
Correct |
679 ms |
55640 KB |
Output is correct |
8 |
Correct |
629 ms |
56004 KB |
Output is correct |
9 |
Correct |
1244 ms |
63324 KB |
Output is correct |
10 |
Correct |
1156 ms |
61740 KB |
Output is correct |
11 |
Correct |
999 ms |
56452 KB |
Output is correct |
12 |
Correct |
753 ms |
54868 KB |
Output is correct |
13 |
Correct |
626 ms |
55788 KB |
Output is correct |
14 |
Correct |
599 ms |
56192 KB |
Output is correct |
15 |
Correct |
2 ms |
344 KB |
Output is correct |
16 |
Correct |
1 ms |
344 KB |
Output is correct |
17 |
Correct |
2 ms |
348 KB |
Output is correct |
18 |
Correct |
1 ms |
344 KB |
Output is correct |
19 |
Correct |
2 ms |
344 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
344 KB |
Output is correct |
2 |
Correct |
0 ms |
344 KB |
Output is correct |
3 |
Correct |
1 ms |
348 KB |
Output is correct |
4 |
Correct |
4 ms |
604 KB |
Output is correct |
5 |
Correct |
2 ms |
600 KB |
Output is correct |
6 |
Correct |
2 ms |
600 KB |
Output is correct |
7 |
Correct |
2 ms |
600 KB |
Output is correct |
8 |
Correct |
3 ms |
604 KB |
Output is correct |
9 |
Correct |
1 ms |
344 KB |
Output is correct |
10 |
Correct |
1 ms |
348 KB |
Output is correct |
11 |
Correct |
2 ms |
344 KB |
Output is correct |
12 |
Correct |
1 ms |
344 KB |
Output is correct |
13 |
Correct |
2 ms |
344 KB |
Output is correct |
14 |
Correct |
1 ms |
344 KB |
Output is correct |
15 |
Correct |
2 ms |
348 KB |
Output is correct |
16 |
Correct |
1 ms |
344 KB |
Output is correct |
17 |
Correct |
2 ms |
600 KB |
Output is correct |
18 |
Correct |
1 ms |
344 KB |
Output is correct |
19 |
Correct |
1 ms |
344 KB |
Output is correct |
20 |
Correct |
1 ms |
348 KB |
Output is correct |
21 |
Correct |
2 ms |
344 KB |
Output is correct |
22 |
Correct |
1 ms |
440 KB |
Output is correct |
23 |
Correct |
1 ms |
344 KB |
Output is correct |
24 |
Correct |
1 ms |
344 KB |
Output is correct |
25 |
Correct |
2 ms |
444 KB |
Output is correct |
26 |
Correct |
2 ms |
348 KB |
Output is correct |
27 |
Correct |
2 ms |
344 KB |
Output is correct |
28 |
Correct |
2 ms |
348 KB |
Output is correct |
29 |
Correct |
1 ms |
344 KB |
Output is correct |
30 |
Correct |
1004 ms |
56880 KB |
Output is correct |
31 |
Correct |
578 ms |
57660 KB |
Output is correct |
32 |
Correct |
887 ms |
61840 KB |
Output is correct |
33 |
Correct |
833 ms |
57268 KB |
Output is correct |
34 |
Correct |
715 ms |
56644 KB |
Output is correct |
35 |
Correct |
761 ms |
57424 KB |
Output is correct |
36 |
Correct |
664 ms |
57936 KB |
Output is correct |
37 |
Correct |
1215 ms |
63884 KB |
Output is correct |
38 |
Correct |
646 ms |
63824 KB |
Output is correct |
39 |
Correct |
1042 ms |
56916 KB |
Output is correct |
40 |
Correct |
570 ms |
57408 KB |
Output is correct |
41 |
Correct |
548 ms |
57488 KB |
Output is correct |
42 |
Correct |
517 ms |
58188 KB |
Output is correct |
43 |
Correct |
551 ms |
57308 KB |
Output is correct |
44 |
Correct |
527 ms |
58072 KB |
Output is correct |
45 |
Correct |
532 ms |
58448 KB |
Output is correct |
46 |
Correct |
1 ms |
344 KB |
Output is correct |
47 |
Correct |
2 ms |
348 KB |
Output is correct |
48 |
Correct |
2 ms |
344 KB |
Output is correct |
49 |
Correct |
1 ms |
348 KB |
Output is correct |
50 |
Correct |
1 ms |
344 KB |
Output is correct |
51 |
Correct |
0 ms |
344 KB |
Output is correct |
52 |
Correct |
994 ms |
56916 KB |
Output is correct |
53 |
Correct |
579 ms |
57424 KB |
Output is correct |
54 |
Correct |
924 ms |
63956 KB |
Output is correct |
55 |
Correct |
775 ms |
56912 KB |
Output is correct |
56 |
Correct |
695 ms |
57168 KB |
Output is correct |
57 |
Correct |
673 ms |
56912 KB |
Output is correct |
58 |
Correct |
664 ms |
57904 KB |
Output is correct |
59 |
Correct |
1230 ms |
61804 KB |
Output is correct |
60 |
Correct |
625 ms |
63760 KB |
Output is correct |
61 |
Correct |
1022 ms |
56896 KB |
Output is correct |
62 |
Correct |
596 ms |
57364 KB |
Output is correct |
63 |
Correct |
2 ms |
344 KB |
Output is correct |
64 |
Correct |
1 ms |
344 KB |
Output is correct |
65 |
Correct |
1 ms |
344 KB |
Output is correct |
66 |
Correct |
2 ms |
344 KB |
Output is correct |
67 |
Correct |
2 ms |
344 KB |
Output is correct |
68 |
Correct |
2 ms |
344 KB |
Output is correct |
69 |
Correct |
1 ms |
344 KB |
Output is correct |
70 |
Correct |
1 ms |
344 KB |
Output is correct |
71 |
Correct |
1 ms |
344 KB |
Output is correct |
72 |
Correct |
2 ms |
344 KB |
Output is correct |
73 |
Correct |
1 ms |
348 KB |
Output is correct |
74 |
Correct |
1 ms |
344 KB |
Output is correct |
75 |
Correct |
1 ms |
344 KB |
Output is correct |
76 |
Correct |
1 ms |
344 KB |
Output is correct |
77 |
Correct |
1 ms |
344 KB |
Output is correct |
78 |
Correct |
1 ms |
344 KB |
Output is correct |
79 |
Correct |
1235 ms |
61044 KB |
Output is correct |
80 |
Correct |
1184 ms |
60004 KB |
Output is correct |
81 |
Correct |
1055 ms |
60084 KB |
Output is correct |
82 |
Correct |
825 ms |
54468 KB |
Output is correct |
83 |
Correct |
711 ms |
54500 KB |
Output is correct |
84 |
Correct |
697 ms |
54368 KB |
Output is correct |
85 |
Correct |
689 ms |
55288 KB |
Output is correct |
86 |
Correct |
1257 ms |
58976 KB |
Output is correct |
87 |
Correct |
1113 ms |
60928 KB |
Output is correct |
88 |
Correct |
1027 ms |
53632 KB |
Output is correct |
89 |
Correct |
740 ms |
54704 KB |
Output is correct |
90 |
Correct |
605 ms |
55516 KB |
Output is correct |
91 |
Correct |
618 ms |
56152 KB |
Output is correct |
92 |
Correct |
2 ms |
344 KB |
Output is correct |
93 |
Correct |
1 ms |
344 KB |
Output is correct |
94 |
Correct |
1 ms |
344 KB |
Output is correct |
95 |
Correct |
1 ms |
344 KB |
Output is correct |
96 |
Correct |
1 ms |
344 KB |
Output is correct |
97 |
Correct |
0 ms |
344 KB |
Output is correct |
98 |
Correct |
1252 ms |
61520 KB |
Output is correct |
99 |
Correct |
1141 ms |
58664 KB |
Output is correct |
100 |
Correct |
1006 ms |
59912 KB |
Output is correct |
101 |
Correct |
881 ms |
55908 KB |
Output is correct |
102 |
Correct |
720 ms |
55724 KB |
Output is correct |
103 |
Correct |
679 ms |
55640 KB |
Output is correct |
104 |
Correct |
629 ms |
56004 KB |
Output is correct |
105 |
Correct |
1244 ms |
63324 KB |
Output is correct |
106 |
Correct |
1156 ms |
61740 KB |
Output is correct |
107 |
Correct |
999 ms |
56452 KB |
Output is correct |
108 |
Correct |
753 ms |
54868 KB |
Output is correct |
109 |
Correct |
626 ms |
55788 KB |
Output is correct |
110 |
Correct |
599 ms |
56192 KB |
Output is correct |
111 |
Correct |
2 ms |
344 KB |
Output is correct |
112 |
Correct |
1 ms |
344 KB |
Output is correct |
113 |
Correct |
2 ms |
348 KB |
Output is correct |
114 |
Correct |
1 ms |
344 KB |
Output is correct |
115 |
Correct |
2 ms |
344 KB |
Output is correct |
116 |
Correct |
992 ms |
54720 KB |
Output is correct |
117 |
Correct |
824 ms |
57456 KB |
Output is correct |
118 |
Correct |
1166 ms |
63804 KB |
Output is correct |
119 |
Correct |
876 ms |
57020 KB |
Output is correct |
120 |
Correct |
719 ms |
56740 KB |
Output is correct |
121 |
Correct |
778 ms |
57872 KB |
Output is correct |
122 |
Correct |
671 ms |
57796 KB |
Output is correct |
123 |
Correct |
1255 ms |
62800 KB |
Output is correct |
124 |
Correct |
1242 ms |
61424 KB |
Output is correct |
125 |
Correct |
1010 ms |
56036 KB |
Output is correct |
126 |
Correct |
822 ms |
57556 KB |
Output is correct |
127 |
Correct |
799 ms |
57808 KB |
Output is correct |
128 |
Correct |
677 ms |
58352 KB |
Output is correct |
129 |
Correct |
671 ms |
59012 KB |
Output is correct |